
Abstract

Database management systems (DBMS) have to provide
certain facilities meeting the requirements of scientific and
statistical database management. Reviewing problems and
promises for current database technology, the STEP stan-
dard is assessed for selected aspects of data management,
data access, data exchange, and data modeling. STEP-
based solutions are proposed for concrete examples of SS-
DBM especially in the context of the scientific data ex-
change standard FITS. We introduce and discuss EX-
PRESS, the modeling language of STEP, and SDAI, the cor-
responding data access interface. The performance of
navigational access provided by SDAI is considered a cru-
cial aspect. Exploiting the code generation mechanism used
to instantiate SDAI for a given programming language - we
call it a generated call interface - an adequate software ar-
chitecture on top of an ODBMS as well as STEP-specific
optimizations are proposed.

1. Introduction

Researchers of different fields have identified a large set
of general and domain-specific characteristics with scientif-
ic and statistical database management (SSDBM) in the
past [4, 8, 15, 18, 24, 25, 26, 28, 30]. From [26] we learn
that an integrated working environment (IWE) must be able
to manage distributed and heterogeneous data sources
(short sources) like files and databases as well as tools like
functions of a statistical package in a uniform way. It must
also allow to efficiently access (find, read, update, associ-
ate) them. Moreover, centralized data management helps to
avoid redundancy and alleviates reuse of shared data. Reuse
may be further supported through explicit data exchange
between such environments introducing visible redundan-
cy. Thus, we identify three very important pillars of an IWE
(see figure 1).

• data management: Space- and time-efficient storage
mechanisms and indexing [4, 26, 28] (often spatial at
various levels of grid) are needed to cope with searching
within the giant data flood produced by, for example, ra-
dio astronomy. Moreover, the data pool may get too
large for secondary storage devices (harddisks) or users
just might wish to hold backups on tapes. Therefore, ter-
tiary storage management [18, 28] and especially ar-
chiving become important.

• data access: Data access varies from simple, explicit
navigation between single objects to powerful queries
needing to describe what to do with which data without
giving a recipe how to do it. Different access patterns
like ordered vs unordered and unrestricted vs restricted
access occur. Moreover, a two-step processing [4, 30]
seems to be very common: first, a description of some
astronomical image or the book-keeping data of some
experiment is searched; second, part of the image or
some experiment measurement is accessed through an
index. Various access granules like attributes, simple
objects, complex objects, and collections are often
found. A complex object may contain a net of simple ob-
jects and a collection may represent a multidimensional
array as a whole, subset or slice. Data from current as
well as legacy applications must be accessible from sev-
eral programming languages.

• data exchange: Tools demand for data exchange of
sources without information loss. These heterogenous

m
an

ag
em

en
t

ac
ce

ss

ex
ch

an
ge

Figure 1: IWE pillars

IWE

Using the STEP Standard and Databases in Science

Udo Nink
University of Kaiserslautern

P.O. Box 3049, 67653 Kaiserslautern, Germany
e-mail: nink@informatik.uni-kl.de

Published in Proc. 9th International Conference on Scientific and Statistical Database Management, August 1997, Olympia, Washington.

sources may be databases of different DBMSs or ordi-
nary files of different formats. In addition, interpreta-
tion of such data may vary.

Data exchange often presumes files. Files represent a fu-
ture legacy problem, since distributed objects are underway
with an incredibly fast pace. Consequently, data exchange
or distribution (often in the sense of broadcasting) soon will
not have to undergo the following steps anymore: copying
the data into files, storing the files on a diskette or zip me-
dium, physical transportation to another place, and, finally,
copying into another computer and another IWE. You will
not even need “ftp” when having replaced those hard trans-
port media by the rather soft internet then. Instead, applica-
tions themselves will be able to transparently access distrib-
uted objects online. Huge quantities of data like image da-
tabases will be logically stored only once somewhere in the
Internet and clients will ask for the portions they currently
need. Nevertheless, file-based data exchange will not van-
ish at once, since paradigm shifts have always been slow.
So far, existing file-based scientific data exchange stan-
dards (FITS, HDF, NetCDF and others [37]) have concen-
trated on some data interchange format (short DIF [18]).
Only a few worry about data access and data management,
though providing rather limited solutions.

On the other hand, database technology is very strong in
centralized data modeling and schema management, deliv-
ers one global view to data, and, therefore, alleviates over-
view and exchange of data as well as book-keeping and im-
plementation of applications. Moreover, sharing of smaller-
than-file data granules (a row in a table for instance), con-
currency of many applications, recovery from system fail-
ures, and querying very large data sets are supported. Query
optimizers achieve performance by taking into account dif-
ferent storage strategies, access paths and processing algo-
rithms when constructing alternative execution plans for a
query to be evaluated. But, unfortunately, database technol-
ogy did not care about DIFs.

Thus, these worlds still have to be merged. There are at
least two ways to accomplish this: completing DIFs with
database technology or vice versa.

Completing DIFs with current database technology
would be quite a job to do. In the recent past, object data-
base management systems (ODBMSs) have always been
trying to catch up with the relational database world. 1991,
the year ODMG (Object Data Management Group [2, 3])
has been conceived by a group of frustrated ODBMS ven-
dors, relational DBMSs were acknowledged to have a ten
year advantage over ODBMSs. Things have changed in the
meantime and object-orientation (short OO) has run into
our lives, but ODBMs surely did not catch up. They rather
seem to get swallowed by relational vendors that diligently

define quite different products extended by these or those
OO features. All products are, amusingly, called universal
server or alike. Obviously, this approach is slow. But scien-
tific and other data exchange standards very often follow
this path, anyway, trying to invent the wheel once again.

Completing database technology with DIFs seems easier
at a first glance. But there are at least two problems. First,
database vendors cannot be influenced much, except by
participation in standardization efforts. Second, there are
lots of DIFs to implement.

Therefore, we have to search for another solution allow-
ing to shift much of the implementation effort to existing
database technology. This is possible by hiding underlying
storage from application development. Application devel-
opers usually do not want to see underlying storage. They
do not even want to see transactions or alike, which is even
harder to realize and out of the scope of this paper. To hide
data storage a stable interface is needed allowing to replace
or even switch between concrete implementations. Ideally,
freely switching between relational and OO systems and
vice versa, or the concurrent use of both worlds is provided.

Now this is the way of STEP (ISO 10303, Industrial Au-
tomation Systems and Integration - Product Data Represen-
tation and Exchange [23, 34]). STEP has emerged from
long experience with electronic data interchange. Though
initially concentrating on product data, its basic and most
important concepts are generic and independent of applica-
tion domain. Consequently, it has soon become a frame-
work to describe and specify data. For this purpose a pow-
erful data modeling language named EXPRESS [11] has
been developed which is ISO international standard since
January 1994. This quite unique feature in the set of data ex-
change standards represents a formalism to describe data
and is the very basis of the whole standard. Most important
parts of the standard define, always using EXPRESS, the
STEP Data Access Interface (SDAI [13]), the clear text en-
coding [12], and lots of schemas supporting data design. It
is these mentioned parts that support data management, data
access, and data exchange independent of database technol-
ogy. Therefore, let us set the pillars illustrated in figure 1 on
top of a solid foundation (see figure 2):

• data modeling: Scientific and statistical applications
make heavy use of complex objects and operations. Data
may be unstructured, time-ordered, derived, or multime-
dia and may have complex relationships. Thus, powerful
definition of data types and relationships is needed. As
observed before, there are two different notions of data
semantics: meta data (annotation, description, book-
keeping) vs. real data (analysis, measure) [4]. Corre-
sponding schemas contain very complex as well as sim-
ple parts, and corresponding data sets are large or very

large, respectively. Additionally, data from different
sources are often modeled in different ways (heteroge-
neous schemas) and porting of data and code is a pain.

The most important pillar of the three on top of the foun-
dation is the pillar of data access. Access through SDAI
means access to data which has been defined in EXPRESS,
no matter where the data resides. Data exchange may thus
be realized using one generic SDAI program that can copy
data from one repository (a file or database including real
data and STEP meta data) to another. Data management is
hidden by SDAI and has lead to many STEP implementa-
tions some of which have been reported in [8, 10, 16, 17, 20,
32]. They show that implementation effort may be balanced
between database technology and the STEP-layer itself. Ar-
chiving has been discussed in [8]. Distributed data and fed-
erated repositories are studied in [10]; there, an architecture
is proposed that allows for SDAI-based access to different
DBMSs; a schema mapping component and a mapping de-
scription language are central for this approach; the system
is operational in a prototypical variant-bill-of-materials ap-
plication of a leading german automobile vendor. For inves-
tigations of implementations on relational, extended-rela-
tional, and object-oriented DBMSs see [16, 17]. Extending
EXPRESS to become a fully object-oriented programming
language is discussed in [20]. EXPRESS and SDAI are en-
hanced with semantic relationships in [32].

In contrast to these systems we concentrate on a design
optimally supporting application optimization. The advan-
tages of navigational access for certain access characteris-
tics have early been proved in the OO1 Benchmark [7]. On
the other hand, unthinkingly used navigational access may
lead to horrible response times. And as we have shown in
[21], additional performance losses are to be expected for
the extra SDAI software layer if not serious precautions are
undertaken. We, therefore, exploit abstractions in STEP
that allow us to early bind information in order to improve
performance (and detect errors as soon as possible). Our
second goal is to allow for replacement of underlying data-
base technology. Thus, the resulting software architecture

of our prototype minimizes overall system dependency.
Since portability contradicts performance, we have made a
compromise by implementing only few parts that are most
important for efficiency in a system dependent manner.
Thus, integrating our thoughts into what we define “gener-
ated call interface”, allows us to stay with a layered soft-
ware architecture and be performant.

In the following section we will introduce the STEP
standard. We then concentrate in section 3 on applying
STEP to SSDBM and, especially, to the scientific data ex-
change standard FITS (Flexible Image Transport System).
There, we discuss the two most important parts of the stan-
dard from our point of view: EXPRESS and SDAI. After-
wards, we concentrate on optimization of SDAI-like access
and propose an adequate architecture as well as STEP-spe-
cific optimizations before we conclude our work.

2. STEP

ISO 10303 - STEP [23, 34] is developed by ISO TC184/
SC4 Industrial Automation Systems and Integration. Its ob-
jective is to neutrally and system-independently describe
products throughout their life cycle from design to mainte-
nance. However, the resulting formalisms have made it su-
perior to simply file-based data exchange formats; it has be-
come the transparent basis for implementing and sharing
product databases. As [8, 27, 31] have shown and will be
shown here, there are many domain-independent aspects
applicable to SSDBM and other non-product application
domains as well. STEP is organized in a series of parts
which may be grouped into five main groupings1.

• Description methods (see figure 3 [35]) form the very
basis. Part 1, Overview, contains universal definitions,
and part 11, EXPRESS Language Reference Manual,
describes the data-modeling language and, thus, the ab-
stract data model.

• Implementation methods describe the mapping from for-
mal specifications to a representation usable for imple-
mentation. Part 21 represents the file-based clear text en-
coding (which is what DIFs traditionally have aimed at),
parts 22 - 26 describe the language-independent part of
SDAI plus some language bindings (C++, C, FOR-
TRAN, IDL). A mapping to Java is also under develop-
ment.

• Conformance methodology provides information for
testing of software-conformance to the standard and, es-
pecially, how to create abstract test suites and which
methods be tested.

1. Thanks to Jim Nell allowing us to reuse his
“STEP on a Page”.

m
an

ag
em

en
t

ac
ce

ss

ex
ch

an
ge

Figure 2: IWE pillars (2)

IWE

modeling

• Integrated information resources comprise concrete data
models divided into several layers to serve as basis for
the definition of application protocols (see below). The
lowest layer (regarding the part numbers), integrated ge-
neric resources, contains overall used generic entities.
The integrated application resources have slightly more
context. They alleviate application protocol integration
and enable interoperability. Application-interpreted
constructs are even more precise and may be used to de-
fine identical concepts across application protocols.

• Application protocols, finally, describe specific product-
data applications, that is, STEP applications will normal-
ly be implemented on top of an application protocol re-
using there defined types.

3. Applying STEP to SSDBM

There exist numerous scientific data formats. [37] gives
an overview over about 20. [36] is a very good starting point
for FITS (Flexible Image Transport System) that will be
compared to STEP in the following discussion. FITS is a
worldwide accepted file-based data exchange standard in
the astronomy community that helps crossing installations
whose internal formats and hardware differ. The Interna-
tional Astronomical Union FITS Working Group (IAU
FWG) was given authority over FITS matters by the 1988
IAU Assembly. FITS has evolved from a graphic format in
the very beginning to an abstract data format. Though it
does not provide for ready-to-use code, several general soft-
ware packages are available. In the following we will intro-
duce EXPRESS and SDAI and apply them to FITS.

3.1. Data modeling - EXPRESSing data

We view EXPRESS [11] as DDL (data definition lan-
guage of a DBMS). Objects are defined through strongly
typed entities aggregating properties (attributes and con-
straints). Attributes may be constants, be of data types like
integer, collections (also called aggregates), named types,
enumerations, selection types similar to unions in C, or gen-
eralized types. Instances of entities are unique through a
non-visible, system-defined identifier. In addition, optional
keys may be defined by the user. User-defined relationships
are explicitly modeled by entity-valued attributes; for such
a given attribute an inverse attribute may be defined at the
partner entity to further restrict the existing relationship and
to allow “backward” read access.

Besides these features that are also present in most other
object models, EXPRESS provides multiple inheritance; all
properties of several parent entities are inherited to a child
entity, and each single property may be refined in the child.
Another, quite unique feature, is multi-class membership
(also called complex entity type), an elegant solution to im-
plicitly define new combinations of existing classes using
predicates; thus, many explicit definitions exploiting multi-
ple inheritance may be avoided; as example, think of per-
sons that, naturally, have more than one role at a time and
migrate between roles during their lives. To represent all
possible combinations of scholar, worker, football-player,
and basketball-player in C++ you would have to define 10
extra classes; see also below for an application to FITS.

EXPRESS is ‘only’ structurally object-oriented, that is,
object behaviour like methods in a class are not available.
However, functions and procedures, today only used for
implementing derived attributes and integrity constraints
(also called rules), may be defined using common procedur-
al language statements and built-in functions. Except for the

Figure 3: STEP on a page

possibility to write an executable main program, EXPRESS
may be viewed as a programming language.

A schema may contain definitions of value types, enti-
ties and integrity constraints. Several schemas may exist for
a repository, and they may reuse each other on type gran-
ules. Schemas are also used as scope for the evaluation of
integrity constraints, functions and procedures.

Note that support for metadata exists, but in a slightly
different sense than in SSDBM: special entities exist de-
scribing the structure of any user-defined entity to allow for
schema-independent access. Metadata in the SSDBM sense
carries application semantics. Therefore, it has to be mod-
eled in EXPRESS, too. Thus, STEP delivers a kernel frame-
work to build an extended SSDBMS. And by definition of
application protocols domain scientists may participate in
the standardization process, thereby integrating domain-
specific data structures and semantics.

3.2. Modeling the example

The presented schemas in figures 4 and 5 are redesigned
from the Astronomical Image Processing System (AIPS) of
Allen Farris [33]. The underlying object model is the one of
C++. Since most ODBMSs are based on C++, our redesign
in EXPRESS will help to easily see the differences. A FITS
file is composed of a sequence of Header Data Units
(HDUs). The header of an HDU consists of a list of “key-
word=value” statements describing the format of contained
data. Additionally, information like instrument status or
history may be included here. The data section of the HDU
may contain a digital image, a table, or a multidimensional
matrix depending on the chosen subtype of HDU. Many
constraints how the data has to be organized and formatted
exist in the standard; we will only refer to those that we
need here. To keep things simple, we also restrict ourselves
to the shaded region in figure 4.

The class hierarchy in figure 5 encapsulates access to
FITS files. We have illustrated our version only to show the
benefits of multi-class membership. If using the following
clause, we may omit the explicit definition of the classes be-
low the horizontal line in figure 5:

ENTITY Media SUPERTYPE OF
(ONEOF(BlockInput, BlockOutput)

ANDOR
ONEOF(Disk, Tape9, Std));

Note that “ONEOF” is a class selector and works like
“xor” and “ANDOR” is the class constructor. “A ANDOR
B” results in classes A, B, and AB.

Let us now concentrate on HDUs again. Figure 6 illus-
trates a possible design for some FITS structures in EX-
PRESS. Some useful aspects shall be pointed out.

First, management of identifiers that may participate in
relationships is automatically done by the system. Only
“Keyword” shall have “name” as user-defined identifier (or
key), in order to support fast searching from outside. We ac-
complish this by “UNIQUE”, a local rule. Together with the
automatic extent-management for entities the set of allowed
keywords may thus be controlled.

Second, the relationship between “HeaderDataUnit” and
“Keyword” is represented by an attribute named “key-
words” referencing a list of “Keyword”. To support analy-
sis of occurrences of keywords in other HDUs, an addition-
al “INVERSE” path may be added to avoid searching or
joining known from relational systems (see set-valued at-
tribute “used_in” in “Keyword”).

Third, “PrimaryArray” contains a derived attribute com-
puted by the function “getRawData” that will be discussed
later. Since this function also expects parameters from out-
side, we add the list-valued attribute “tmpidx” that may
hold up to 999 values (a FITS constraint) depending on the
number of existing dimensions of the “data” array. The

Figure 4: FITS header data units

HeaderDataUnit

PrimaryArray ExtensionHeader

ImageExtension
PrimaryGroup

BinaryTable
Extension

DataUnit

Keyword
n

ISA

Figure 5: FITS I/O

Media

BlockOutput
Std

Tape9
Disk

FitsStdInput
FitsTape9Input

FitsDiskInput

FitsStdOutput
FitsTape9Output

FitsDiskOutput

BlockInput

function “getRawData” searches a value from the array and
returns it multiplied with some “bscale” and added to some
“bzero” in order to convert array values into true physical
values in case of different formats.

Fourth, we do not need any extra data in order to make
file IO work, because this is clearly the task of a converter
between the STEP clear text encoding (part 21 [12]) and
FITS. To write STEP data out of some repository into a file
according to part 21 (which is just another repository), a ge-
neric copy-routine can be written or used (we wrote one
with an older version of SDAI). This routine may be devel-
oped to be independent of any given schema, because of
three prerequisites: EXPRESS defines the abstract data
model common to all repositories, one schema may define
a concrete data model for several (here both) repositories,
and SDAI allows meta-data-based access to both (see next
subsection).

Fifth, there are many, often low-level, constraints on
FITS data or corresponding format in a file. We do not have
to adopt those that are only relevant to the pure file format.
The restriction that there must be 36 card images of fixed
length (unused space filled up with blanks) per header
record of an HDU is a good example. Other constraints,
nevertheless, are worth a thought. The keyword format, for

instance, allows only digits, upper case Latin alphabetic
characters, the underscore, and the hyphen. Then there are
mandatory keywords that must appear in a header. For both
problems we can define rules; a local rule to check a key-
word (see WHERE-clause “ok” in “Keyword” calling some
“check” function) and a global rule to check the “key-
words” of an HDU. Since global rules are quite similar to
functions (plus optional WHERE-clause) we skip an exam-
ple.

Sixth, we omitted the value indicator of a keyword. Nor-
mally, if it contains “= “, an associated value field must ex-
ist (here “pdata”). Since we have predefined null values in
EXPRESS, we do not need this field and, instead, may test
the value of “pdata” directly. We use the predefined NVL-
function (FUNCTION NVL(VALUE:GENERIC:T; SUB-
STITUTE:GENERIC:T):GENERIC:T;) that delivers the
“VALUE”, if not indeterminate, and the “SUBSTITUTE”
otherwise. Regard that “NVL” uses “GENERIC” parame-
ters accepting any type. The type-label “T” is used to en-
force that both, parameters and the return type, share exact-
ly the same type.

EXPRESS has lots of predefined functions, but we have
to break the discussion and move on to SDAI.

3.3. Data access - SDAI

In analogy to EXPRESS, we view SDAI as DML (data
manipulation language). It provides its functionality
through an API (application programming interface) like
most ODBMSs do. Moreover, functionality is roughly the
same.

SDAI defines abstractions like model (a named physical
object container) or schema instance (logical collection of
shared models obeying to the same schema). Repositories
(databases) may contain several schema instances. Five
predefined schemas provide for metadata corresponding to
user-defined classes (dictionary schema), session control
(session schema), application data management (population
schema), predefined classes (data type schema), and param-
eters (parameter data schema).

Principally, the programming model may be character-
ized by root access to objects or data containers, navigation
from object to object, and, supporting different access pat-
terns, rudimentary queries and iteration on different collec-
tion types (set, bag, list, and array). Data access must occur
inside transaction boundaries where SDAI only enforces
atomicity and durability (“A” and “D” of the ACID para-
digm, [9]). Atomicity means that either all calculations of a
transaction are guaranteed to come through or none. Dura-
bility means that results survive process boundaries and do
not get lost in case of a system crash. Rules centrally de-

SCHEMA fits;
REFERENCE FROM basics (SomeValue);
TYPE HDUType = ENUMERATION OF

(NotAHDU, PrimaryArrayHDU, UnknownExtensionHDU);
END_TYPE;
ENTITY HeaderDataUnit;

id: INTEGER; nodims: INTEGER; size: INTEGER;
hdutype: HDUType;
keywords: LIST [0:?] OF Keyword;

END_ENTITY;
ENTITY PrimaryArray SUBTYPE OF (HeaderDataUnit);

bscale: REAL; bzero: REAL;
data: LIST [0:?] OF SomeValue;
factor: LIST [0:999] OF INTEGER;
tmpidx: LIST [1:999] OF INTEGER;
DERIVE pdata: REAL :=

bscale * getRawData(data, factor, tmpidx) + bzero;
END_ENTITY;
ENTITY Keyword;

name: STRING; comment: STRING;
pdata: SomeValue;
INVERSE

used_in: SET [0:?] OF HeaderDataUnit FOR keywords;
UNIQUE UR1: name;
WHERE ok: check(name) = TRUE

END_ENTITY;
END_SCHEMA;

Figure 6: EXPRESS schema for FITS

fined in EXPRESS may only be validated explicitly; conse-
quently, the “C” in ACID, consistency, is not automatically
ensured by the system. This is quite dangerous because in-
tegrity checking, thus, is possibly subject to many decentral
applications. Moreover, STEP does not explicitly talk about
the “I”, isolation, that is, it does not force simulation of sin-
gle-user sessions in a multi-user environment. Therefore,
applications may still behave quite differently on different
STEP-systems.

The mentioned two-step processing in astronomy and
other scientific as well as statistical domains may be well
served by storing catalog data and raw data in different
schema instances and models. To allow references between
instances of different models (pointer from catalog entry
into image base for example) the schema instances must
overlap in the corresponding portions of their schemas.

Different access granules range from simple-typed at-
tributes over set-valued attributes (using iterators), objects,
and object sets (especially entity extents inside models) to
entire models and schema instances (used as scope for val-
idating rules).

Hiding from existing storage mechanisms of main mem-
ory, file or database system SDAI defines data structures
and operations supporting access to heterogenous STEP re-
positories (data in main memory, files, or databases). These
interface specifications are also independent of program-
ming languages. In addition, language-specific bindings ex-
ist mapping the specified interface to existing programming
language constructs, thereby exploiting the capabilities of
the current language. In consequence, the language bind-
ings still have much in common and the programming mod-
el is the same regarding the SDAI part.
Unfortunately, the work on the FORTRAN binding has
been cancelled in October 1995 due to lack of activity!
There are, principally, two possible actions now: revive the
binding by a proposal or, because a binding to OMG’s IDL
is currently under work (and will not be cancelled), force a
FORTRAN binding to IDL.
The existing binding to C++ is twofold and provides an ear-
ly binding for schema-dependent access as well as a late
binding for schema-independent access (useful for brows-
ers or converters between file-formats).

Last but not least, the main part of SDAI and some bind-
ings will soon be international standard, and, therefore,
portability of applications and uniform data access will be
guaranteed, to a high degree, across STEP-DBMSs.

3.4. Programming the example

We have introduced the function “getRawData” in the
FITS example. Figure 7 illustrates the corresponding defi-

nition in EXPRESS. The function accepts a list of values
(the “data” array of an HDU), a list “idx” of coordinates,
and a list “factor” of dimension sizes. The local variable “i”
is needed for the repeat loop where the “offset” into the lin-
ear array is calculated. Then, the array is accessed and the
value returned.

Now, the reader may ask, what is the role of SDAI? The
answer is rather simple: you either program the functional-
ity centrally with EXPRESS in a schema or with SDAI for
a given progamming language. The former solution may be
called from SDAI which mainly provides an interface to
EXPRESSed entities and their attributes including derived
attributes and, therefore, procedural elements. This ap-
proach is to be preferred for multi-language environments
to centralize application semantics and, thus, to allow reuse
by automatically generated code. The latter approach, cod-
ing in SDAI, may, on the other hand, lead to better exploi-
tation of existing software packages.

Figure 8 contains a solution for “getRawData” using
SDAI from within C++. Its structure is very similar to the
solution in figure 7. In addition, we implement a function

FUNCTION getRawData(data: LIST:x OF SomeValue;
idx: LIST OF INTEGER;
factor: LIST OF INTEGER)
: REAL;

LOCAL i: INTEGER; offset: INTEGER;
END_LOCAL;

offset := idx[LOINDEX(idx)];
REPEAT i := LOINDEX(idx) + 1 TO HIINDEX(idx);

offset := offset + idx[i] * factor[i];
END_REPEAT;
return(data[offset]);

END_FUNCTION;

Figure 7: Access to FITS data

Real getRawData(Somevalue__list_ptr data;
INTEGER__list_ptr idx, factor) {

int i = idx->Lower(); int offset = idx->GetByIndex(i);
for (i = i+1; i <= idx->Upper(); i++)

offset += idx->GetByIndex(i) * factor->GetByIndex(i);
return data->GetByIndex(offset);

}
void sameKeywords(Headerdataunit_ptr hdu, hdu2;

Headerdataunit__set_var& r) {
hdu->keywords->query(“ENTITY IN used_in”, hdu2, &r);
Headerdataunit__iterator it(r);
for (it.Beginning(); it.Next();)

doIt(it->GetCurrentMember);
}

Figure 8: Sample SDAI code

“sameKeywords” to illustrate the use of SDAI queries and
corresponding iterators. The function matches keywords of
two given HDUs using an SDAI query (the query string is
evaluated against each entry in the aggregate; “ENTITY” is
placeholder for the parameter “hdu2” to the query). An iter-
ator on the result of the query containing keywords com-
mon to both HDUs is used to call “doIt” (not shown) for
each of these keywords. Note that all names in the sample
code that also occur in the schema result from code genera-
tion; all underlying types and methods are complete and
ready to use.

4. Tuning call interfaces by code generation

In [22] we have argued for call interfaces being the best
choice to serve application programming altogether. Cod-
ing with call interfaces (IMS, ADABAS, or ODBC [19])
follows the syntax of the chosen programming language,
and applications use database functionality through (often
generic) routines of given libraries. Thus, no preprocessing
concept or host language compiler extension is needed as in
the case of “embedding” (eSQL, [19]) or “integrated lan-
guage” (persistent ALGOL, [1]). Therefore, standard com-
pilers suffice and compilation speed is optimal. Further, in-
ternal coding of the interface is easy due to the decoupled
approach. In general, the learning overhead is rather low
and depends more on the complexity of the database data
model. Moreover, call interfaces have only recently been
subject to standardization as for ODBC [5], ODMG [2, 3],
SDAI (STEP Data Access Interface [13, 14]), and - last but
not least - the future call level interface of SQL [29].

On the other hand, coding of applications with call inter-
faces has usually been low-level and cryptic. Moreover, ac-
cess control and error detection have been poor, and, espe-
cially, performance has been poor because of indirections.

In the following, we will concentrate on improving the
most important aspect: performance. In [21] we have shown
that SDAI introduces additional performance penalties
when straightforwardly implemented on top of ODBMSs.
This is because its functionality is very similiar to that of
APIs of ODBMSs and it does not introduce more powerful
concepts that could be exploited. But it is, nevertheless,
possible to improve performance and even to outperform
the underlying ODBMS in some cases. We bind types and
operations or both combined as abstract data type (ADT,
class) early, that is not later than application compile time
for a programming language with static type checking. To
prevent precompilers or compiler extensions, we apply
code generation to complete the predefined interface, which
is described through rules, and its implementation.

In our prototype code generation may be influenced by
additional integration descriptions. These are independent
of the underlying ODBMS or host programming language,
in order to allow for easy porting. SDAI, ODMG, and the
VStore-API (our prototype of an API for a DBMS tailored
to adequate management of explicit complex-object ver-
sions, [22]) exploit different instantiations of this integra-
tion technique which we call generated call interface. Part
of these APIs may (optionally) be generated out of schemas
(for all approaches), out of integration description (in our
SDAI prototype), and queries (in the case of VStore).

4.1. Architecture

Our first iteration of a STEP-DBMS layer resulted in a
fully functional C++ early binding on top of Ontos. Comic
[10] has been ported to our implementation. The prototype
is still under development regarding performance tuning.

First, we introduce the development environment con-
taining our layer as a central part. Figures 9, 10, and 11
show the software components and the data (or file) flow
between them from schema development to application
linking. Figure 9 comprises the steps to prepare code gener-
ation using a commercial EXPRESS toolkit [6]. A user de-
velops a schema with EGE (EXPRESS-G graphical editor),
parses the resulting file with exparse producing an internal
representation which is completed with exlink evaluating
external schemas. The result is accessible through the EX-
PLORER library on top of which we have built our E2C++
code generator. This approach provides flexibility to react
to changes to SDAI, which have been frequent in the past,
and to the differences between the target ODBMSs.

others
fits.exp fits fits

EGE exparse exlink EXPLORER

E2C++

Figure 9: Schema development

classes
Schema

E2C++

Generator

C++
Compiler

DB

SDAI
dictionary

system

libfits.a

Figure 10: Code generation

Figure 10 contains the steps to be performed until appli-
cation compilation. E2C++ generates C++ classes (one
header and one implementation file for each class) for the
specified ODBMS basically following the mapping from
EXPRESS to IDL and farther to C++. The schema genera-
tor of the ODBMS extracts corresponding meta data usually
from the header files and stores it in a database. Additional-
ly, E2C++ initializes the SDAI (data) dictionary. The C++
classes may now be compiled by a standard C++ compiler
and archived in a library (libfits.a).

Figure 11 illustrates the remaining steps. The application
code is compiled with a standard C++ compiler and linked
with the generic and the schema-specific SDAI libraries to
form an executable program.

Our main design decisions were based on the following
observation. The frequency of calls to SDAI operations
generally decreases with increasing complexity. The sim-
plest and most frequent operations are construction, de-
struction, and assignment of simple-type attributes. Still
simple and quite frequent operations are attribute access
and test methods. More complex and less frequent opera-
tions are construction and destruction of entity instances.
Most other operations are even more complex and less fre-
quent. Since the entire SDAI environment is specified in
EXPRESS, too, we coded the latter operations in SDAI in
order to keep them portable.

The resulting modules depicted in figure 12 have differ-
ent degrees of dependency to the DBMS. When changing
the DBMS the simple types including object references
have to be completely reimplemented. And the code gener-
ator has to be adapted to produce correct class implementa-
tions that depend on the simple types. On the other hand,
code generation allows for completely regenerating sche-
ma-specific classes (like “Keyword”) and DBS-indepen-
dent classes (like “Model”), and it minimizes reimplemen-
tation for DBS-dependent classes (like “Transaction”).

4.2. Performance

Our intention is to adequately provide high performance
through alternative storage and caching with prefetching.
Currently, basic mechanisms to control code generation
have been provided and the code that has to be replaced has
been identified. We are lacking a complete language to de-
scribe the integration and, of course, a complete implemen-
tation right now.

Wherever data containers are defined as ADTs (like a
model or some set), implementations underneath may be re-
placed as long as they obey the interface. The same holds
for single objects and attributes, since access to these must
occur through methods. Therefore, attributes may be em-
bedded as part of the physical memory layout of the object
or referenced with a reference object in-place. Additionally,
attributes may be materialized or calculated. Embedding of
attributes needs less space and decreases communication,
because such an attribute is fetched together with its object.
It is usually used for rather small, private data (not existing
without the surrounding object) of fixed or bounded size.
On the other hand, referencing allows for finer grained
locking and for delay of fetching “expensive” attributes
(big images or high conversion overhead in federated sys-
tems). Usually, unbounded dynamic data (some set) and
shared data like entity instances are stored by reference.
However, it may be useful to skip these heuristics. Private
data may be stored by reference to avoid redundancy. Or,
the other way round, instances may be embedded knowing
that they actually will not be shared or, in case of data dis-
tribution, introducing redundancy for the sake of faster ac-
cess. The decision to materialize or calculate an attribute is
especially useful for inverse attributes of explicit reference
attributes. The collection of inverse references is either ex-
plicitly stored or calculated through some search routine.
Read-only access to both, the reference attribute and the
corresponding inverse attribute, vote for materialization.
On the other hand, frequent updates to the reference at-
tribute may result in expensive automatic updates of the in-
verse attribute; in this case, calculation is better. Another
example for materialization are entity extents inside mod-
els. An entity extent of a model logically contains all in-
stances of a specific type and all of its subtypes that are

fits.cc

FITS executable

C++
Compiler

C++
Linker

libsdai.a

libfits.a

Figure 11: Application building

Figure 12: Software layers

libDBS.a

libsimpletypes.a
libsdai.a

libfits.a

stored in the model. Therefore, we may choose between re-
dundant or disjoint storage for the extents corresponding to
the nodes of the inheritance hierarchy of the entity.

Caching is used to speed up consecutive access to previ-
ously accessed data. Instances and referenced values may
be cached at the client. Computed values like derived or in-
verse attributes may be cached after the first computation.
This requires automatic recomputation, if the value has
changed in the meantime, using, for example, some invali-
dation mechanism triggered by interfering changes of the
same user (remember that other users are isolated in our
case). Since we allow for the choice of storing such results
locally to an instance or in a global table, function result
caching as described in [28] is directly supported. Caching
may be controlled by a prefetching mechanism discussed in
the next paragraph.

Prefetching optimizes physical I/O and the replacement
of cache contents in certain processing situations. Consecu-
tive access may be sped up by decreasing communication
with the server (one big fetch instead of many small fetch-
es), thereby caching data in advance that will hopefully be
accessed. On the other hand, prefetching may slow down
other applications due to reduced transaction parallelism (a
conflict may occur between a read and a write transaction)
because of locking prefetched data. Therefore, it is very im-
portant to specify the working context as precise as possible
while keeping overhead as low as possible. Furthermore,
we extend control beyond pure prefetching to capture appli-
cation knowledge when data is no longer needed and may

be deactivated. Thus, we identify adequate events that trig-
ger actions on data sets. Events are given by SDAI opera-
tions. Actions are ACTIVATE, DEACTIVATE, and
WRITEBACK (see figure 13); these operations are found
in any client/server system. Data sets may be single objects
(SELF for the current instance, ATTRIBUTE for some en-
tity-valued attribute), simple or aggregate attributes (AT-
TRIBUTE again), logical clusters (DEEP) or query results
(QUERYRESULT, QUERY). Clusters may be physical
(stored in the neighbourhood on disk) or logical (related
through references). Physical clusters may be created using
a “magnetic” object. Newly created instances may be stored
in its neighbourhood. Unfortunately, SDAI does not sup-
port facultative placement operators in create operations;
only a target model may be specified. Therefore, we use
physical clustering only internally. Logical clusters are
specified for prefetching by restricting the depth of naviga-
tion (“DEEP 1” would prefetch directly referenced partners
only) for all attributes. Further extensions may capture
paths through reference attributes.

4.3. Queries and indexing

Two important techniques in DBMSs coping with per-
formance are indices and query shipping. Indices provide
for alternative paths for data access allowing a query opti-
mizer to plan data access according to estimated costs. In
many ODBMSs only simple indices are supported and eval-
uation must often take place at the client (data shipping).
This is quite costly for calculating a single value over a very
large data set. Alternatively, query shipping allows for exe-
cution at the server and, therefore, decreases at least net-
work traffic.

Optimizing SDAI queries is, unfortunately, restricted
due to their simple logical expressions. Clauses may not be
connected for joining, and path expressions must not have
aggregate-valued nodes (except for the leaves) yet. Though,
indices may be invisibly used to speed up implicit content-
based access in SDAI as in operations like “create instance
in model <aname>” that imply searching in dictionaries.

In additon to function result caching, Segev and Chatter-
jee [28] support query optimization through function index-
ing (storing known function results). Thus, the optimizer
may choose between computing or index lookup for a set of
function calls. For SDAI queries we must program a func-
tion to first look up its result in the index and, if successful,
omit the computation. But, in our prototype, we are able to
avoid this explicit programming that has to be done by the
application programmer, because of the intermediate code
generation step. A description outside SDAI, whether an in-
dex should be used or not for instance, then leads to trans-
parent generation of extra code into the function bodies.

[<entity> | <global>] ‘;’
ENTITY <name> ‘;’

{ <entity_rule> ‘;’ }
{ <attr> ‘;’}

END_ENTITY
ON <entity_op> DO <action>
ATTRIBUTE <name> [CALC | REF | EM-
BED] ‘;’

{ <attr_rule> ‘;’ }
END_ATTRIBUTE
ON [<attr_op>] DO <action>
VALIDATE
[READ | WRITE | TEST | UNSET |

ITERATE | QUERY [<string>]]
[ACTIVATE | DEACTIVATE |

WRITEBACK | NOP]
[ATTRIBUTE <name> [‘,’ <integer>] |

SELF | DEEP <integer> |
QUERYRESULT | QUERY <string>]

ON <op> FOR <name> DO <action>
[OpenModel | GetEntityExtent |

 CloseModel | ValidateSchemaInstance]

<integration> ::=
<entity> ::=

<entity_rule> ::=
<attr> ::=

<attr_rule> ::=
<entity_op> ::=

<attr_op> ::=

<action> ::=

<global> ::=
<op> ::=

Figure 13: Tuning description language

5. Conclusions

We have assessed STEP-DBMSs for SSDBM. Problems
and requirements have been discussed for data manage-
ment, data exchange, and, in detail, for data modeling and
data access. It has been shown that STEP, though designed
for product data management, provides many concepts that
make it, first, applicable to SSDBM and other domains and,
second, superior to existing scientific data exchange stan-
dards. Among these concepts are: the data modeling lan-
guage EXPRESS defining an abstract data model, pre-
defined schemas defining lots of concrete data models for
different application needs, the clear text encoding for file-
based data exchange, and uniform data access independent
of database technology through SDAI.

We have shown how to model and use FITS, a well-
known scientific data exchange standard, in STEP. Espe-
cially the similar expressiveness of EXPRESS to modern
programming languages allows for a quite seamless map-
ping of real world concepts. Some of its concepts like multi-
class membership are even more powerful. Although (in-
stance) methods may be simulated with derived attributes,
we would prefer direct support to further improve applica-
tion modeling. In addition, schema-central interface defini-
tion allows for a very clean mapping to most programming
languages.

Furthermore, a solution has been proposed to optimize
applications without changes to application code basically
providing for early binding of schema information and op-
tional, STEP-specific tuning descriptions (independent of
DBMS); a code generator delivers optimized abstract data
types (ADT) for entities. Our STEP-DBMS layer is porta-
ble to different ODBMSs and takes the corresponding re-
quirements into account. The code generator provides high
efficiency without sacrificing flexibility. Its extended abili-
ty to shift decisions before application run-time by binding
them to STEP-specific data sets is ideally suited to support
the two optimizing principles storage and caching with
prefetching. Concluding, separating optional prefetching
description from the (real) application program has the fol-
lowing advantage: schema and application development do
not need to take into account proprietary optimizing princi-
ples of a given DBMS.

We have learned that SSDBM shares many requirements
with CAD or product database management and, also, that
there are specialties not directly supported by STEP. Pro-
fessional SSDBM users should, therefore, participate in the
standardization process to enforce support for their needs.
There is, for example, no language binding for SDAI to
FORTRAN due to lack of activity!

Acknowledgements

We would like to thank Dirk Wollscheid for his exten-
sive implementation effort. We also thank Per Svensson for
helpful comments and suggestions to improve this paper.

References

[1] M. Atkinson, R. Morrison: Orthogonally Persistent Object
Systems. VLDB Journal, 1995, 4:319-401.

[2] F. Bancilhon, G. Ferran: The ODMG Standard for Object
Databases. Proceedings 4th International Conference on Da-
tabase Systems for Advanced Applications, DASFAA’95,
pp. 273-283.

[3] R.G.G. Cattell: The Object Database Standard: ODMG-93 -
Release 1.2. Morgan Kaufmann, 1996.

[4] A. Farris: Modeling Complex Astrophysics Data. Proceed-
ings 7th International Working Conference on Scientific and
Statistical Database Management, SSDBM’94, Charlottes-
ville, Virginia, pp. 149-158.

[5] K. Geiger: Inside ODBC. Microsoft Press, 1995.

[6] GIDA mbH: Documentation for the EXPRESS Design and
Programming Environment Version 3.0. Berlin, 1995.

[7] J. Gray: The Benchmark Handbook. Morgan Kaufmann,
San Mateo, CA, 1993.

[8] A. Herbst: Long-Term Database Support for EXPRESS Da-
ta. Proceedings 7th International Working Conference on
Scientific and Statistical Database Management, SS-
DBM’94, Charlottesville, Virginia, pp. 207-216.

[9] T. Härder, A. Reuter: Principles of Transaction Oriented
Database Recovery, in: ACM Computing
Surveys 15:4, 1983, pp. 287-317.

[10] T. Härder, T. Sauter, J. Thomas: Design and Architecture of
the FDBS Prototype INFINITY. Submitted to International
CAiSe’97 Workshop on Engineering Federated Database
Systems, EFDBS’97, Barcelona, Spain, June 1997.

[11] ISO TC184/SC4/WG7: Product Data Representation and
Exchange, Part 11: EXPRESS Language Reference Manual.

[12] ISO TC184/SC4/WG7: Product Data Representation and
Exchange, Part 21: Clear Text Encoding of the Exchange
Structure.

[13] ISO TC184/SC4/WG7: Product Data Representation and
Exchange, Part 22: STEP Data Access Interface.

[14] ISO TC184/SC4/WG7 N403 (Committee Draft): Product
Data Representation and Exchange, Part 23: C++ Program-
ming Language Binding to the Standard Data Access Inter-
face Specification.

[15] W. Kim: Object-Oriented Approach to Managing Statistical
and Scientific Databases. Proceedings 5th International
Working Conference on Statistical and Scientific Database
Management, SSDBM’90, Charlotte, NC, pp. 1-13.

[16] D. Loffredo, M. Hardwick: Efficient Database Implementa-
tion of EXPRESS Information Models. 4th International

EXPRESS Users Group Conference, Greenville, SC, 1994.
US Product Data Association (1995).

[17] H. Lührsen, T. Krebs: STEP Databases as Integration Plat-
form for Concurrent Engineering. Proceedings 2nd Interna-
tional Conference on Concurrent Engineering, Johnstown,
1995, pp. 131-142.

[18] D. Maier, D.M. Hansen: Bambi Meets Godzilla: Object Da-
tabases for Scientific Computing. Proceedings 7th Interna-
tional Working Conference on Scientific and Statistical Da-
tabase Management, SSDBM’94, Charlottesville, Virginia,
pp. 176-184.

[19] J. Melton, A.R. Simon: The New SQL: A Complete Guide.
Morgan Kaufmann Publishers, 1993.

[20] M. Maier, G. Staub: Object Modeling Technique (OMT)
and EXPRESS: Comparison of “Two Worlds”. Proceedings
International EXPRESS User Group Conference, EUG’95,
Grenoble, 1995.

[21] U. Nink: Efficiency of SDAI on top of ODBMSs (in ger-
man). Informatik Xpress 8, Proceedings CAD’96, Verteilte
und intelligente CAD-Systeme, Kaiserslautern, Germany,
March 1996, pp. 430-445.

[22] U. Nink, N. Ritter: Database Application Programming with
Versioned Complex Objects. Informatik aktuell: Proceed-
ings of the GI-Fachtagung “Datenbanksysteme in Büro,
Technik und Wissenschaft”, Ulm, Germany, March 1997.

[23] J. Owen: STEP: An Introduction. Information Geometers,
1993.

[24] G. Ozsoyoglu, Z.M. Ozsoyoglu, K. Vadaparty: A Scientific
Database System for Polymers and Materials Engineering
Needs. Proceedings 7th International Working Conference
on Scientific and Statistical Database Management, SS-
DBM’94, Charlottesville, Virginia, pp. 138-148.

[25] M. Rafanelli: Research Topics in Statistical and Scientific
Database Management. Proceedings 4th International
Working Conference on Statistical and Scientific Database
Management, SSDBM’88, Rome, Italy, pp. 1-18.

[26] B. Rieche, K.R. Dittrich: A Federated DBMS-Based Inte-
grated Environment for Molecular Biology. Proceedings 7th
International Working Conference on Scientific and Statis-
tical Database Management, SSDBM’94, Charlottesville,
Virginia, pp. 118-127.

[27] F. Schönefeld, C. Böhm: Using EXPRESS Database Tech-
nology for Accessing NCBI Genomic Data. 3rd Internation-
al EXPRESS Users Group Conference, Berlin, Germany,
1993.

[28] A. Segev, A. Chatterjee: Supporting Statistics In Extensible
Databases: A Case Study. Proceedings 7th International
Working Conference on Scientific and Statistical Database
Management, SSDBM’94, Charlottesville, Virginia, pp. 54-
63.

[29] ISO/IEC 9075-3:1995: Information technology -- Database
languages -- SQL -- Part 3: Call Level Interface.

[30] P. Svensson: Position Paper to panel: Are Commercially
Available DBMS Good Enough? Proceedings 4th Interna-
tional Working Conference on Statistical and Scientific Da-
tabase Management, SSDBM’88, Rome, Italy, pp. 388-398.

[31] J. Vuoskoski, M. Dach: Using EXPRESS in a High Energy
Physics Research Environment. 4th International EXPRESS
Users Group Conference, Greenville, SC, 1994. US Product
Data Association (1995).

[32] W. Wilkes, T. Kretzberg: EXPRESS+ and SDAI+: Generat-
ing Application-Specific Programming Interfaces for Prod-
uct Data Management (in german). Informatik Xpress 8,
Proceedings CAD’96, Verteilte und intelligente CAD-Sys-
teme, Kaiserslautern, Germany, March 1996, pp. 150-164.

WWW pages

[33] A. Farris: AIPS++: Astronomical Information Processing
System.
http://www.cv.nrao.edu/fits/src/
http://aips2.nrao.edu/aips++/

[34] G. Heine: Product Description Standards.
http://www2.echo.lu/oii/en/products.html

[35] J. Nell: STEP on a Page. NIST.
http://www.nist.gov/sc5/soap/

[36] B.M. Schlesinger: FITS Basics and Information. Hughes
STX.
http://www.gsfc.nasa.gov/astro/fits/basics.info.html

[37] I. Stern: Scientific Data Format Information FAQ.
http://www.cv.nrao.edu/fits/traffic/scidataformats/faq.html.

