

The IOP Approach to Enterprise Frameworks

Dr. Udo Nink, Stefan Schäfer

CronideSoft AG
Dachsgang 27

D-35428 Langgöns
(udo.nink | stefan.schaefer)@cronidesoft.com

Abstract: This paper introduces the Internet Operating Platform (IOP), an enter-
prise framework for large scale software development. In addition to obeying to
important standards (UML, XML, Java) an enterprise framework has to fulfil three
basic requirements. First of all, it has to be broad and needs an elaborate architec-
ture complementing standards and technologies rather than purely connecting
them. Therefore, IOP combines UML modeling, workflow specification, code
generation, run-time configuration, and component architectures. Secondly, an en-
terprise framework allows most developers to concentrate on business leaving
technical issues to a few specialists. Therefore, IOP abstracts from underlying
technologies in the areas of front-ends (HTML, XML, Java), communication pro-
tocols (FTP, HTTP, JMS, RMI), distributed components (EJB, CORBA), and per-
sistence (virtual memory, XML, SQL92, SQL:1999). All corresponding drivers are
replaceable and can even coexist. Third, an enterprise framework has to provide
micro solutions on both technical and business levels. Thus, IOP provides amongst
others built-in services and components like session management on a technical
level and content management on a business level.

1 Introduction

One major IT problem is the fast pace of changing technologies implying frequent
changes of products, applications, market requirements, and education needs. A very
promising approach to keeping pace with progressing technologies is to “think in plat-
forms”. In the automotive industry Volkswagen has been very successful with its reali-
zation of a platform for manufacturing and selling its car types as well as those of Audi,
Seat, and Skoda (belonging to the same enterprise). As a side effect to the now unified
technology and product stack solutions to other problem domains come along (uniform
set of skills, uniform processes, and so on).

Naturally, software industry is making every effort to force IT platforms by definition of
standards. In the past, single companies were able to establish de-facto standards due to
the wide-spread use of their products. But today, very important as well as world-wide
accepted de-jure standards emerge pushed by Internet technologies (HTTP, HTML,
XHTML, XML, XSL, JAVA, Servlets, JSP, EJB, JMS [W3C, OMGa, Co01, Ro99]).
Moreover, with UML [RJB99] and SQL [ISO99] we share international standards for
software engineering and database languages, respectively.

In addition, the Internet forces application developers to “think in services”. Such ser-
vices (like registration services) embody high reuse potential compared to customer-
specific business processes or fine-grained entities.

1.1 The Need for Enterprise Frameworks

Strategic software development has to address the above mentioned key factors. Ap-
proaches to implement such a strategy range from out-of-the-box solutions to custom
development. From our observations in the areas of markets, projects, applications, and
technologies (in bold-face, see list below) the answer lies in the middle and is named
enterprise frameworks. Our approach to enterprise framework is IOP, the Internet Oper-
ating Platform [Cr02, Sc03].

Markets: Out-of-the-box solutions are adequate in near-perfect-fit cases, but fail for
high customization effort. On the other hand, from-scratch-solutions lead to high over-
head in choosing and implementing with the right set of products and technologies.
Enterprise frameworks are suited when customization is expected to make up more than
30 per cent. The wheel gets invented only once providing a set of products and technolo-
gies that fit together and all applications on top save the effort.
Projects: Project management shall keep projects in-time and in-budget. Team members
have to fit certain roles, be trained and be coached according to chosen tools and devel-
opment processes. An enterprise framework already provides an overall architecture
along which responsibilities, development activities, and roles are identified and aligned.
One framework expert suffices to train and coach 10 to 20 team members.
Applications: Risk mitigation implies that technical problems are solved first. Conse-
quently, development focus initially lies on technical issues and shifts to business issues
with each iteration. Break-even is reached earlier with enterprise frameworks because of
already proven technology stacks spanning user interfaces, workflow, communication,
integration, and persistence as well as ready-to-use, thoroughly tested, partial solutions.
Technologies: The fast paced creation of standards, technologies, and product versions
periodically “makes rookies out of experts again”. Enterprise frameworks provide a
more stable development environment buffering IT evolution to a certain degree. They
provide a platform for choosing among different technologies for different subjects (like
communication) in different contexts (like calling services). And technologies can be
tested and compared by integration into the framework.

1.2 Roadmap

In the following we will introduce and discuss IOP – our implementation of an enterprise
framework. Section 2 introduces IOP due to different views on its architecture. After-
wards, IOP objects and IOP components are detailed in section 3. Section 4 describes
IOP interaction, IOP workflow, and their collaboration. Section 5 deals with modeling
and code generation and how these are embedded in a phase plan for developing an
example application. The relationship to other work is sketched in section 6. Section 7
concludes our work and gives an outlook to future efforts.

2 Architecture

We will start with IOP's design goals. Then, we discuss IOP's architecture from different
perspectives: building blocks, layering, systems, and topology. The building block view
starts with a concise list of main concepts and micro frameworks. Then, the relationships
between these blocks are discussed in the layer view. Afterwards, the system view gives
an overview of grouping functionality into subsystems. The topology view describes the
basics for installation and configuration. Finally, we compare different architectures.

2.1 Design Goals

IOP has an object-oriented distributed component architecture including methods and
tools for the software development life-cycle. And it has a strong focus on standards.
Three ubiquitous standards build IOP's foundation: UML, XML, and Java/J2EE:
• UML (Unified Modeling Language [RJB99]) is the base of visual modeling.
• XML (eXtendend Markup Language [Co01]) is the base of data exchange and con-

figuration. Furthermore, it is used as alternative persistence model.
• Java is the programming language of choice; important J2EE packages [Ro99] are

integrated with IOP. But, while J2EE is merely a huge unsorted box of APIs IOP de-
livers the glue putting the pieces together via a sophisticated architecture.

All other supported standards and technologies are replaceable throughout the frame-
work from front-end to database:
• Front-end: Coupling of arbitrary front-end technologies in multi-channel fashion

via IOP Interaction. Implementation proves include Java Swing, HTML, DHTML,
and WML.Markup generation is supported using JSP, Servlets, and XML/XSLT.

• Workflow: Process definition via WPDL (Workflow Process Definition Language
[WfMC]) or via UML activity diagrams (planned). IOP provides two levels of
workflows: simple workflows executed on very fast core engines and complex
workflows executed on dedicated workflow components on top of core engines.

• Communication: Different protocols encapsulated as IOP devices like HTTP, RMI,
FTP, POP3, SMTP, and JMS. Such devices can be reused via drivers for component
communication and for the IOP Virtual File System (VFS).

• Component architecture: Support for CORBA and EJB. IOP provides a common
base for developing components based on CORBA, EJB, or internal IOP concepts.

• Persistence: Configurable persistence managers for virtual memory (VM),
ORDBMS (SQL:1999), RDBMS (SQL92), and file system (XML) using persistence
mappings (object-to-relational, object-to-object-relational, [Sc03, Ru01, Am99]).

IOP does extensive code generation. From the UML model IOP generates configuration
information, Java code, and SQL code for the handling of objects, object references,
object collections, and more. In addition, workflows are compiled to the core workflow
engine. See section 5 on “Modeling and Code Generation” for a complete example.

2.2 Building Block View

IOP is made up of several building blocks which are roughly described in the following:

IOP Objects: Objects (more precise: business objects or user-defined object types) are
classes in the UML model with stereotype “IOPBO” for IOP Business Object. They
represent the smallest building block of IOP. Visually designed object models including
direct relationships and inheritance are supported. These models define the static struc-
ture of object graphs that hold application data and provide for local-scope functionality.
Objects have location-transparent identity, are type-safe, and can be versioned and refer-
enced. Object graphs can declaratively be copied and be transformed between different
representations (virtual memory, XML, SQL92, and SQL:1999).
IOP Components: IOP Components aggregate and manage IOP Business Objects. They
provide for vertical business logic combined into vertical services. Components are the
granule for transparent distribution and addressing as well as for integration of third-
party services and applications. Moreover, they are key to optimization of performance
and scalability. Finally, components encapsulate underlying component architectures and
communication technologies. More than a dozen of ready-to-use or ready-to-adapt com-
ponents are given ranging from id handling to content management.
IOP Design Repository: The IOP Design Repository holds all static design information
extracted from the UML models by the IOP Compilers; its corresponding component is
named “IOP Design Component”. This information is enriched by mapping information
for Java and SQL. Currently supported partial UML models are the class model and the
component model. Dynamic design information is supported via workflows (see Work-
flow Framework below).
IOP Run-time Repository: The run-time repository is driven by the IOP Configuration
Component. It holds information corresponding to topology (hardware nodes, software
nodes, module nodes), configuration of components w. r. t. choices of technologies
(drivers, devices, persistence, virtual file system), and initialization data ranging from
passing of user data to specifications of load balancing and fallback.
IOP Service Framework: The IOP Service Framework is a collection of so-called mi-
cro frameworks that encapsulate partial and mostly technical solutions. Micro frame-
works provide reusable services via stable interfaces. Currently, more than a dozen ser-
vices are implemented like for localization, logging, or the virtual file system. A very
important role is played by the device/driver concept which is used consistently through-
out the framework. Devices encapsulate low-level APIs for close to ten different proto-
cols like ftp and http. Drivers like a file system driver can be implemented on top of such
devices. The drivers, in turn, can then be used for configuring instantiated services like
file systems for components or software nodes. Since IOP supports parallel usage of
different implementations at the same time you can easily construct file systems hiding
different protocols behind simple folders much like in Unix operating systems.
IOP Persistence Framework: The IOP Persistence Framework provides for persistent
storage of Java objects. It combines the concepts of SUN JDO [Ru01] and well-known
concepts for object-relational mappings [Am99]. Four persistence mappings are avail-
able in IOP: IOP Virtual Memory Persistence, IOP XML Persistence, IOP SQL92
Persistence, and IOP SQL:1999 Persistence [Sc03]. Needed mapping information is
extracted from the UML models and stored with each object type in the IOP Design

Repository and in the IOP Object Type System. Again, components can choose persis-
tence mappings by configuration. A very nice spin-off of this approach is, e. g., that
exporting database data (from a database wrapped by a database-driven component) is
reduced to copying the data to a component driven by IOP XML Persistence!
IOP Interaction Framework: The IOP Interaction Framework defines the access point
to an IOP system for the outside world. It is based on a service handler architecture and
is responsible for converting requests to and responses from any IOP system. Encapsu-
lated communication protocols (HTTP, JMS, RMI) and exchange formats (HTML,
WML, XML, Java objects, messages) are implemented for various servers (like applica-
tion servers). Implementation choices are, again, configurable.
IOP Workflow Framework: The IOP Workflow Framework is based on the reference
architecture of the Workflow Management Coalition (WfMC, [WfMC]) and the corre-
sponding OMG recommendations [OMGb]. IOP thus supports workflow specification
via WPDL. Workflows (or processes) are configurable in terms of distributed execution,
auditing, and statistics. We distinguish between workflow definition and workflow run-
time for performance-improved representations. Workflow participants are mapped to an
organizational model thus leveraging from existing organization data in business
applications. Robustness and scalability are given by transaction awareness and
disconnected session management. Since workflows can span many scopes and time-
scales (business workflow, user interaction workflow, technical workflow) we provide
for a very fast core workflow engine as basis for more specialized engines (e. g. for user
interaction).
IOP Integration Framework: The IOP Integration Framework collects concepts, im-
plementations, and workflows for third-party systems integration. Integration compo-
nents act as clients of such systems. Due to resulting intersections between integration
and interaction, both micro frameworks share common code: low-level drivers for com-
munication protocols, exchange formats, and implied transformations. Moreover, inte-
gration can reuse interaction by, e. g., registering an interaction listener on a message-
oriented integration hub. Finally, integration components can also act as persistence
managers thus providing access to integration data via ordinary business objects.
IOP Code Generation Framework: The IOP Code Generation Framework provides a
set of compilers (including scanners, parsers, analyzers, and writers) supporting code
generation for modeled design information. These compilers are heavily used for appli-
cation development as well as for development of large portions of the framework itself.
This self-reproducing feature guarantees continuous testing of IOP. All design informa-
tion is stored in the IOP Design Component and the IOP Object Type System. Supported
source languages are UML and WPDL and corresponding target languages are Java,
SQL92, SQL:1999, XML, and IOP Workflow Format. Each generated business object
for Java obeys to a set of inner interfaces implemented by corresponding classes for its
entity (storing data), behavior (operations), collections (array, map), referencing (object
linking), and persistence mappings. Moreover, SQL code is generated for definitions of
types and tables. Additionally, DTD/XMLSchema code is generated structuring XML
representation of business objects. Finally, workflows defined via WPDL are translated
into IOP Workflow Format that can be handled by the IOP Core Workflow Engine.

2.3 Layer View

Let us now put the building blocks together. Figure 1 shows the layer view on IOP's
architecture. The layers are: presentation layer (on top), application layer, component
layer, and persistence layer. Starting left of the component layer you will find a UML

model containing the system design. This model is parsed and written to the IOP Design
Repository. During code generation business components and internal components are
generated. These can be configured to reuse existing micro frameworks like integration
or persistence. The configuration (see right side) is written into the run-time repository.
In case of integration a component wraps an outside system (e. g., legacy system). If a
component configures a persistence manager it can choose between mappings for virtual
memory persistence, xml persistence (xml files in file system), or SQL persistence (see
persistence layer at the bottom).

In the application layer (2nd from top) workflows represent business processes defined in
WPDL. Again, the code generator delivers internal representations. These get executed
by workflow engines/components. Each such workflow consists of an activity network
where activities wrap implementations. Such implementations can be external applica-
tions or IOP Executables which, in turn, coordinate calls to business components and
prepare data sets for exchange with the front-end.

The presentation layer on top is served by IOP Interaction which is responsible for trans-
lating and dispatching requests and for delivering channel-specific responses. If user
interaction is needed in a workflow then you define the corresponding views to be re-
solved by IOP Interaction as attributes to the corresponding activities. Such a view might
be given by an ordinary html page uploaded into the IOP Content Component.

IOP Interaction

WML/WAPHTML/HTTP XML/HTTP Java Applets email/SMTPJava Applications ...

IOP Workflow

ImplementationsWorkflows/Activities Workflow Engine/Components

IOP Persistence

SQL:1999 MappingSQL92 Mapping VM MappingXML Mapping

Persistence

IOP ComponentsCode Generation

Design Repository Integration

Run-time Repos.

U
M

L
M

od
el Configuration

Legacy System

Code Generation

W
PD

L
M

od
el Configuration

IOP Interaction

WML/WAPHTML/HTTP XML/HTTP Java Applets email/SMTPJava Applications ...

IOP Workflow

ImplementationsWorkflows/Activities Workflow Engine/Components

IOP Persistence

SQL:1999 MappingSQL92 Mapping VM MappingXML Mapping

Persistence

IOP ComponentsCode Generation

Design Repository Integration

Run-time Repos.

U
M

L
M

od
el Configuration

Legacy System

Code Generation

W
PD

L
M

od
el Configuration

figure 1: Layer View on IOP Architecture

2.4 System View

The system view of the IOP architecture describes subsystems, that is, sets of interfaces
(services) encapsulated for software nodes. The idea is to have services running in sepa-
rate processes. While some subsystems are inherently needed for an IOP system others
can be reused or adapted for application programming. Similar to operating systems
different run levels allow for setting an IOP system to certain maintenance modes. Each
(higher) run level adds functionality (e. g., run level 3 supports component startup/shut-
down). Since IOP is built in Java, processes correspond to instantiated Java Virtual Ma-
chines (JVM). For the sake of performance and scalability, all needed IOP resources for
JVMs are managed by the IOP Resource Manager. Here is a list of subsystems:

IOP Boot System: Starting from a single small property file various boot strap loaders
are coordinated to start up or shut down the IOP kernel.
IOP Kernel System: All subsystems and any application system running on IOP are
managed by the kernel system. It is responsible for switching between run levels.
IOP Configuration System: Manages IOP installations, that is, their topologies. These
include hardware and software nodes, component deployment, driver choices, queries,
access policies, devices, listeners, persistence, and caching.
IOP Session System: Sessions store run-time or state information during interaction
with the IOP system (often user-specific information). A session system manages all
sessions for a software node.
IOP Logger System: Logging is important for detecting errors and misuses. The logger
system provides logging services for quickly storing log messages at certain software
nodes. Log messages can be leveled (by severity) and categorized (by category and sub-
category). Developers can then use output filters to quickly search for error causes when
compiling or running IOP.
IOP Localization System: Localization is used in multi-language applications. It is
message-based and maps message numbers to locale-specific messages. Message num-
ber ranges are also supported. Developers do only use message numbers when coding
while associated message texts are defined and resolved in one place.
IOP Driver System: Many APIs (e. g., file system) and protocols (like ftp, http) can be
plugged into IOP via device drivers. A driver system manages all driver instances for a
software node. Each software node can thus be configured to provide certain drivers.
Consequently, software nodes can be dedicated to certain APIs and protocols.
IOP Component System: Components are running in component containers. Manage-
ment of component instances at run time is in the responsibility of the component sys-
tem. Software nodes can be configured to provide only certain components. While driv-
ers map APIs to protocols, components implement low-level business logic reusing
drivers that abstract from technical protocols.
IOP Workflow System: Very fast core workflow engines associated, again, to software
nodes execute defined workflows. Workflows can be complex (inter-department) or
simple (local scope, no user interaction), Simple workflows can be run on dedicated
workflow-sensitive components to improve performance or do functional enrichment.
IOP Object Location System: Objects have a logical location which is part of their
OIDs. Locations map to storage managers (components in most cases). The object loca-
tion system resolves locations given by OIDs (or object references).

IOP Object Type System: Only strongly typed software can be made reliable and effi-
cient with acceptable effort. Thus, IOP forces strong typing (each object belongs to an
object type). All available object types (IOP-specific and application-specific) are man-
aged by the object type system. These are represented by meta objects for object types,
components, object members, and corresponding persistence mappings.
IOP Transaction System: Critical business processes have to be transactional. Thus, the
transaction system is responsible for encapsulating transaction systems like transaction
monitors. IOP is based on JTS and JTA [Ro99].
IOP Statistics System: Similar to logging it is important to collect business information
during system interactions. Again, storing of such information must be fast while analy-
sis itself can be deferred and be done asynchronously. The statistics system provides
services for storage and analysis.
IOP Dispatcher System: For the sake of scalability the dispatcher system delegates
incoming requests to subsystems, workflow engines, and components which then be-
come responsible for serving corresponding requests.
IOP Command System: The command system realizes a command shell to an IOP
system. Command shells are well-suited for testing during development, for administra-
tion purposes, and for simple batch jobs using command scripting.

2.5 Topology View

Figure 2 shows the
first part of the topol-
ogy view on IOP con-
centrating on instal-
lation configuration as
it is defined in our
UML class diagrams.
The configuration
information is collec-
ted under an object of
type IOPInstallation
with stereotype IOP-
BO (meaning IOP
Business Object). An
installation pools host
nodes, file systems,
loggers, and compo-
nents. Host nodes
represent hardware
(computers, processors) running software nodes (processes). Associated file systems are
used for file-based input/output (e. g., a content component might import contents from
a file system). Loggers are needed for storing log messages – each software node must
have exactly one logger. The components in the pool can be wrapped by component
instances (now see figure 3) which are associated with software nodes.

IOPComponentConfig
<<IOPBO>>

IOPInstallation
<<IOPBO>> 0..n

+components

0..npools

IOPHostNodeConfi g
<<IOPBO>>

0..n

name
1

+hostNodes0..n

1
name

hasHosts

IOPLoggerConfig
<<IOPBO>>

0..n
+loggers

0..n

pools

IOPVfsConfig
<<IOPBO>>

0..n +fi leSystems

pools

IOPSoftwareNodeConfig
<<IOPBO>>

n

name
1

+softwareNodesn

1
name

hasProcesses

1 +logger1

has

1 +fi leSystem

use

figure 2: Topology View (part 1) on IOP

The components have to be provided by component containers (like Oracle9i AS, Bea
WebLogic, and Apache Tomcat). Component containers provide component servants
and component drivers. Component servants only contain implemented business logic.
Technology-specific code like home classes or remote classes are generically provided
by IOP and, thus, need not be hand-coded by component programmers.

Component drivers allow to communicate with components using different protocols.
Redundancy and fallback (not shown here) are supported by associating redundant and
fallback drivers. A software node uses components by defining component instances.
Component instances link chosen component servants with chosen component drivers.

2.7 Comparison of Architectures

Figure 4 shows three different kinds of layered application architectures on the top and
two example architectures at the bottom.

Type 1 leads to
monolithic clients
mixing domain logic,
application logic, and
GUI logic. Type 2
introduces application
components allowing
for thinner clients and
for reusable applica-
tion logic. Type 3
enriches this model
by introducing do-
main components col-
lecting common ap-
plication logic across
different applications.
Moreover, a persis-
tence adapter layer is shown due to the technical necessity to bridge the gap from pro-
gramming languages like Java to databases (impedance mismatch).

IOPComponentDriverCon fig
(from objects)

<<IOPBO>>

IOPComponentContainerConfig
(from objects)

<<IOPBO>>

1..n

name
1

+drivers1..n

+container
1

name

providesDrivers

IOPComponentInstanceConfig
(from objects)

<<IOPBO>>
0..n 1..n0..n

+drivers

1..n

IOPComponentConfig
(from objects)

<<IOPBO>>

0..n

1

0..n

+component1

name
1..n1..n

+servers

1..n
name

+servants

1..n providesServants
IOPSoftwareNodeConfig

(from objects)

<<IOPBO>>

name

1

0..n

name

0..n

use Components

figure 3: Topology View (part 2) on IOP

Persistence LayerView Layer Application-Model
Layer

Domain Layer Adapter Persistence LayerView Layer Application-Model
Layer

Domain Layer Adapter

Type 1

Type 2

J2EE Web
Container EJB Container

Enterprise
Information
Systems

IOP Interaction
Transformers Workflow Components

Objects
Drivers & Devices
persistence, communication...
EIS connector

Type 3 Web
Components

Application
Components

Domain
Components

Database
Components

- POS
- TopLink
- XML/DTD

Type 1Type 1

Type 2Type 2

J2EE Web
Container EJB Container

Enterprise
Information
Systems

J2EE Web
Container
Web
Container EJB ContainerEJB Container

Enterprise
Information
Systems

Enterprise
Information
Systems

IOP Interaction
Transformers
Interaction
Transformers WorkflowWorkflow Components

Objects
Components
Objects

Drivers & Devices
persistence, communication...
EIS connector

Drivers & Devices
persistence, communication...
EIS connector

Type 3 Web
Components

Application
Components

Domain
Components

Database
Components

- POS
- TopLink
- XML/DTD

Type 3 Web
Components
Web
Components

Application
Components
Application
Components

Domain
Components
Domain
Components

Database
Components
Database
Components

- POS
- TopLink
- XML/DTD

- POS
- TopLink
- XML/DTD

- POS
- TopLink
- XML/DTD

figure 4: Layered Architectures

The two examples at the bottom of the figure, J2EE and IOP, are both type 3 architec-
tures. J2EE introduces the notion of containers:
• Requests are served by web containers supporting Servlets and JSP having access to

the J2EE APIs (JMS, JAAS, JTA, Java Mail, JAF, JAXP, JDBC, and connectors).
• For the application-model layer as well as for the domain layer J2EE provides EJB

containers where EJBs, again, have access to the mentioned J2EE APIs.
• Access to databases (or, in general, to enterprise information systems) is typically

realized using connectors, JDBC, or JMS from within EJBs of the domain layer.

IOP, first of all, allows to implement the same technical architecture as J2EE. But, in
contrast, it also delivers a more process-oriented architecture as shown in the figure.
• In the left IOP Interaction serves the view layer in order to encapsulate all UI-

specific communication (interaction) to applications. In addition to J2EE markup
frontends IOP also supports Java Swing. In addition to http as communication pro-
tocol IOP also supports technologies like wap and smtp allowing to serve requests
via mobile devices and email, respectively. A transformer approach allows to plug
in channel-specific translators for requests and responses.

• For the application-model layer IOP provides IOP Workflow. Requests are mapped
to workflows representing application logic and delivering responses as well as
model data for driving the frontend using the MVC pattern. If by-pass is needed
then requests can also be mapped directly to activities and components.

• For the domain layer IOP provides IOP Components. Implementation technologies
like EJB or CORBA are hidden and can be chosen by configuration of drivers and
devices. Exactly the same concept is used for connecting to databases and third-
party systems.

3 Objects and Components

Section 2.2 already introduced the notions
of IOP Objects and IOP Components giv-
ing a short overview over both concepts.
Now, the concepts shall be detailed.

3.1 Object Types

IOP delivers an enhanced type system
having two main advantages over the Java
reflection API: it is more expressive w. r. t.
versions, multiplicity, containment, and
persistence mapping; and it performs better
(optimized member access via indices). The UML diagram in figure 5 shows our type
model. The root class named “Type” is abstract and only gathers common concepts for

Type

Scalar

Member

Mapping

Struct 0..n

+members

0..n

0..n

type
+mappings

0..n

type

Object

Component

0..n

0..n

+has

0..n

0..n

figure 5: IOP Type System Model

all kinds of types. Subclasses are “Scalar” and “Struct”. IOP provides close to 20 scalar
types (like blob, boolean, byte, char, and so on). These are mapped to Java primitive
types and can be used as such in a type-safe manner. When modeling, you can also
choose object scalars that have been introduced to support null values. “Struct” is used
for record-like structures and, thus, has members and member mappings. “Object” inher-
its from “Struct”. In addition, objects are identifiable, that is, have an object identifica-
tion, OID in short. OIDs are globally unique identifiers and allow for location of objects
and building relationships (using references) independent of their physical storage loca-
tion. An OID in IOP is made up of five values: location number, type number, type ver-
sion, instance number, and instance version. In addition, many operations are predefined
which all IOP Objects get for free.

3.2 Object Interfaces

Modeled object types are input to
the IOP code generators which
deliver a set of Java classes obey-
ing to a set of interfaces given in
figure 5. On top you find the
interface “Entity” collecting
member setters and getters. The
interface “Behavior” collects
modeled and implemented oper-
ations. All other interfaces act as
clients against behavior interfaces
in order to use objects in different
contexts. The interface “Refer-
ence” is a proxy - all object operations can be called using either the object itself or a
reference to it. Dereferencing occurs transparently regardless of object locations. Fur-
thermore, collection support is given by implemented interfaces “Collection” and “List”
both physically backed up by “Array”. The interface “Map” allows for keyed access to
its entries. For set-oriented operations IOP provides a universal graph interface. On top
of it you get intra-object-graph navigation via object cursors and fast object graph trans-
formation between virtual memory representation, maps, XML, and SQL.

3.3 Component Model

In the section on architecture we have discussed commonalties and differences of IOP
and J2EE. Both have component models. The component model of J2EE, EJB, will be
compared to IOP Components. In addition, we will give an idea on the differences to
web services and what role web services can play in an IOP environment.

Since IOP allows to use EJB as technology driver for IOP Components, you can lever-
age from existing EJB concepts. In addition, IOP has the following main improvements:

List

Collection

Map

Entity

Array Behavior

ocl logic

Reference

manage

manage
referenstoreFor

storeFor

figure 5: Object Interfaces in IOP

• IOP supports EJB as well as CORBA or pure IOP Components.
• The resource management of EJB concentrates on threads, socket connections, data-

base connections, and, of course, components. IOP also has a resource management.
It knows the following resources: component containers (like tomcat for servlets or
jboss for EJBs), component instances, workflow engines, and any drivers (persis-
tence mappings, communication protocols, virtual file systems).

• IOP Components have a built-in core workflow engine that allows for execution of
simple workflows. Thus, workflows can be used to chain component operations in-
side a component to form new operations without Java programming.

• EJB relies on RMI, RMI-IIOP, and JMS for distributed object communication. IOP
additionally allows arbitrary protocols as long as drivers exist (e. g., http).

• EJBs can make use of any Java class. On the other hand, there is no global data
model available across EJBs. IOP additionally supports UML class models. These
can be partitioned into partial models. Each partial model can be associated to a
component and, thus, become its schema. The code inside an EJB may rely only on
that schema meaning that Java code as well as database queries are based on this
schema. Programmers do not need to write mapping code, but rather choose persis-
tence drivers. Of course, databases can also be directly accessed via JDBC.

Taking a look at web services we first talk about what web services are meant for, what
they are, and what they are not:
• Web services are meant for communication between applications across networks

and firewalls. Nevertheless, it is possible to use them for inter-component commu-
nication inside applications, too.

• Web services are useful for publication and invocation of services. They do not help
you w. r. t. service complexity or assembling of services.

• Web services can be viewed as component model. In fact, they provide distributed
object communication mainly by specifying component interfaces and XML mes-
saging. But, they do not provide a programming model for implementing services or
components like EJB or IOP do.

Web services are not yet part of IOP, but integration is straight forward. We view web
services as yet another technology that can be configured for certain responsibilities:
• IOP can use web services via drivers for inter component communication and calls

from activities to components.
• Some IOP concepts are well suited to be published as web services by generating

WSDL and integrating SOAP into IOP Interaction. Candidate concepts are work-
flows, single activities, components, and component methods.

• IOP will not provide an UDDI implementation, since UDDI is used for global regis-
tering and finding of web services. It suffices to support access to UDDI directories.

3.4 Components

More than a dozen components are already implemented. In some cases existing IOP
services are only complemented by components because of the basic need for persistent
storage (left out in the list below). While some components are rather technically moti-
vated others have been built for application development (marked “business” below).

IOP Design Component: The design component manages all elements extracted from
UML modeling by model file parsers. It conforms to UML 1.3 (soon UML 1.4) with
regards to class models and activity models and enriches them by needed mapping in-
formation. The so parsed models are input for the code generators for Java and SQL.
IOP ID Component: The id component is responsible for creating new OIDs with
which newly inserted objects shall be stored.
IOP Workflow Definition Component: Workflow models specified via WPDL are
compiled by the workflow compiler. The resulting process definitions are managed in
the workflow definition component. A workflow model basically contains workflows,
activities, transitions, applications, participants, and workflow relevant data.
IOP Workflow Instance Component: When instantiating a workflow its definition is
first fetched from the workflow definition component. The instantiated and configured
process is then stored and thus available for execution by the workflow engine.
IOP Content Run-Time Component: This component is used to optimize content
management information for run-time presentation. On one hand, it provides optimized
physical contents for run-time access. On the other hand, it can also provide multiple
physical contents for each logical content to support multi-channeling.
IOP Content Management Component (business): The content management compo-
nent supports multi-provider content sites. A site can be bulk-loaded without the need to
manually specify each single content. It is basically structured into sub-sites, resources,
frames, and elements. In addition to managing arbitrary files the component is also used
for managing markup pages for building application front-ends.
IOP Batch Component (business): This component is not explicitly programmed. It is
rather a reminder that its functionality is already given by IOP workflows. That is, work-
flows can be time-sensitive, and a dedicated workflow engine can be configured to con-
trol workflow execution using a clock. Consequently, periodic deliveries, nightly back-
ups, weekend reports, and alike are built using time-sensitive workflows.
IOP Actor Component (business): All actions are performed by actors (e. g., partici-
pants perform workflows). Thus, the actor component allows for management of actors
having accounts and passwords. Actors are also the basis for access restrictions man-
aged by the access component.
IOP Access Component (business): The access component manages access control lists
giving accessors access to accessibles. In most cases actors will take the role of acces-
sors and some products will take the role of accessibles. For the sake of flexibility the
access component itself does not pose any restrictions here, so that arbitrary objects may
take the role of accessors or accessibles.
IOP Organization Component (business): The organization component adds roles and
organizational units to actors. According to directory services or participant mappings it
allows to represent complete organization structures where organizational units provide
roles and manage actors taking roles.

4 Interaction and Workflow

Interaction is responsible for, basically, converting requests to and responses from an
IOP system. An incoming request is translated into an IOP Message. This message is
then sent to the dispatcher. The dispatcher identifies the responsible workflow that shall
serve the request. The workflow (as well as implied activities, executables, and compo-
nent operations) is then run until the next point of interaction. The result is, in turn, sent
back as a message to the dispatcher. The dispatcher identifies the corresponding request
and forwards the message to the interaction layer. The interaction layer finally translates
the result message into a response leaving the system. The workflow to be executed is
wrapped by a technical workflow allowing for pre- and post-processing. Thus, interac-
tion is easily customizable by adapted technical workflows or simply by replacing the
therein called executables.

Workflows are defined using WPDL. The definition spans complete workflow models
including workflows, activities, transitions, applications, participants, and workflow
relevant data. Unfortunately, many things have not been taken into account when WPDL
was defined by WfMC – it is an open issue where to put configuration information for
workflow models. For instance, you somewhere have to specify communication chan-
nels. As a result, workflow system vendors heavily use the so-called extended attributes
(freely definable lists of name/value pairs) in order to backpack configuration informa-
tion to the workflow definitions. Consequently, interoperability between workflow sys-
tems gets a lot harder.

During workflow execution instantiated workflow definitions are kept in the workflow
instance component. An instance holds run-time information for exactly one associated
run of a workflow. This run-time information is fed into the core workflow engine. The
workflow system supports transactional workflows and disconnected sessions in order to
make workflows reliable and to handle interruptions in case of manual activities.
Participants in a workflow model have to be mapped to persons or systems (actors in our
case). Again, the WfMC leaves it to you, but at least recommends the use of organiza-
tional models. IOP therefore supports mapping of participants to actors, roles, and organ-
izational units.
Participants might be involved as performers of several workflows and activities. Thus,
work lists are supported that collect all work items (workflows and activities) a partici-
pant is responsible for. Such work lists are the base for pull or push approaches where
participants or the system decide when to work on which item.

5 Modeling and Code Generation

IOP supports full project life cycles and corresponding development processes (method-
ologies). But, instead of defining yet another development process we rather define steps
that you have to undertake during development (what is done by whom when and why).
Since theory of development processes is a huge area we decided to present only an
example in this paper. Our example will be given in the order sketched by figure 6. We

will first sketch some requirements and then discuss partial models that should result
from analysis and design (see complex activity “modeling” in the activity diagram
above). The next complex activity “code generation” introduces code generation support
of IOP. The final complex activity “coding and configuration” hints on necessary hand-
coding and system configuration.

5.1 Requirements

Our example application is named “WikiCms”. It shall combine automatic linking fea-
tures and ease of use of the wiki brainstorming tool with content management features.
Following are the requirements (incomplete, but sufficient for our example):
• web front-end based on html
• complete import of existing file systems
• automatic content linking based on file system folders and subfolders

5.2 Partial Models

Let us start with a front-end page for
importing a file system (see figure 7).
It is a standard html page where you
enter the source path of an import
folder and a target mount point.

The corresponding workflow has four
activities (see figure 8). Activity “Import_Start” imports the source folder and instanti-
ates meta nodes in main memory. Then it (xor-) splits to either activity “Import_Save”
(saving the object graph in the component) or “Import_Error” (analyzing the error cause)
depending on the workflow relevant data named “successful” of type boolean. Both

requirements

modeling
frontend workflow class model component

model
gui markupfrontend workflow class model component

model
gui markup

code generation

generate
model

inspect bo
code

generate
workflow

inspect wpdl generate
content

generate
model

inspect bo
code

generate
workflow

inspect wpdl generate
content

coding and configuration
write component

code
write executable

code
write test

code
installationwrite component

code
write executable

code
write test

code
installation

figure 6: Recipe for Example Application

figure 7: Import Page

activities (xor-) join again
into activity “Import_End”
that triggers the next front-
end page to show up (see
exit-action). Each activity
is defined as “IMPLE-
MENTATION” of type
“Tool” (see do-actions).

The class model contains a
class diagram on meta directory objects (see
figure 9). Basically, we need the business
objects “Meta Node” (folders and files),
“Meta Directory” (subclass for folders), and
“Meta File” (subclass for files). The objects
are managed by the Meta Directory Compo-
nent (component model not shown).

The page “top.htm” (see code below) is the
start page for navigating through the im-
ported file system. It is specified in html plus
the IOP tag library (close to JSP). First, you
initialize the model part of the
model-view-controller pattern
(MVC) by specifying a busi-
ness object (“iop:useBean”) to
use for data exchange between
the activity (the controller part)
associated to the page (the view
part). Then, you specify access
paths (“Directory.ObjectId”). A
path can, e. g., be used for
linking an activity to show up a
node info page (see “action”
inside “iop:a”) to the name of a
folder (see “iop:value-of”). The
“iop:for-each”-tag then loops
through the collection of nodes
under a directory.

5.3 Code Generation

First, one compiles the UML model. The result is a nested folder or package structure
containing generated Java sources (let us skip generation of XML and SQL). Further-
more, object type system and design component are updated. Now, we inspect the gener-

<!--top.htm-->
...
<iop:useBean id="Directory"
class="cronides...CMSDirectory" >
...

<iop:input type="hidden"
name="Directory.ObjectId"
value="Directory.ObjectId"/>

<iop:a href="action=shownodeinfo&
objectId={Directory.ObjectId}">
<iop:value-of value="Directory.Name"/>

</iop:a>
...

<iop:for-each select="Directory.Nodes"
alias="nodes" >
...

</iop:for-each>
...

Im port_Start
do/ Import_St art_Im plement at ion

Import_End
do/ Import_End_Implementation
exit/ înteraction.ShowView(/croni...�wikicms/prov ider/import_result)

Import_Save

do/ Import_Sav e_Implementation

Import_Error

do/ Import_Error_Implementation

<<XOR>> <<XOR>>

[successf ul=true]

[successf ul=f alse]

figure 8: Activity Diagram

CMSFile
<<IOPBO>>

CMSNode
name : String
lastModified : date
size : int
fileSystemAttributes : int
owner : String
path : path

<<IOPBO>>

CMSDirectory
<<IOPBO>>

0..n

1

+nodes0..n

+directory
1

hasNodes

figure 9: Class Diagram

ated Java code. The example shows part of “CMSFile.java”. Amongst other snippets a
package statement, an import section, the class definition (see “class”), a serial number
(for mapping design entries to Java code snippets), constructors, and inner interfaces
have been generated. All other generated classes (not shown here) for the business object
deliver default implementations for the inner interfaces.

The next step is to compile
the definitions. Workflows
can also be exported to and
imported from WPDL and
WPDL/XML (our XML-
version of WPDL, upcom-
ing XPDL proposal will be
evaluated). The following
code is an excerpt from the
workflow model. You can
see the definition of activ-
ity “Import_Start” which is
of type IMPLEMENTA-
TION and wraps the tool
“Start_Implementation”.
This tool is defined in the
application section and
links to a Java class via
“ToolName”. You can also
see that the activity defines
an xor-split thus restricting
the mentioned transitions.
In case your input to the
html page is correct, the
workflow engine will de-
cide to move on to the next
activity “Import_Save” (or
to activity “Import_Error”
otherwise).

Next, you compile the content, that is the markup pages that make up the front-end of the
application. Since IOP supports bulk-content upload your input can be a complete (web)
site spanning all pages including supported file types like gif. The content compiler
builds a content management structure describing the content from a logical perspective
(sites, sub-sites, resources, elements, and so on). Then, it constructs a far more efficient
run-time representation (compiled content) used by optimized content viewers. Content
run-time also supports mapping of logical content to many physical contents by mime-
type. At activity run time physical contents will be fetched according to specified target
formats. In case of dynamic content the mentioned viewers assemble static and dynamic
content snippets. Dynamic content snippets contain executable code for identifying and
inserting business objects and their attributes.

package ...component.metadirectory;
import ...

public final class CMSFile
extends IOPObject {
static final long serialVersionUID = 859...;
...

//constructors
//inner interfaces for entity, behavior, ...
...
public interface Behavior
extends Entity, CMSNode.Behavior{}

...
}

...
<WorkflowProcessDefinition
Id="WikiCMS.Import"
Name="import" Created="2002-02-06">
<Activity Id="Import_Start"

Label="Import Start Node">
<ActivityKind Type="IMPLEMENTATION">
<ActivityImplementation>
<GenericTool Tool=
"Start_Implementation"/>

</ActivityImplementation>
</ActivityKind>
<TransitionRestriction>
<SplitCharacterisation Type="XOR"
Transitions=
"T_Start_Save T_Start_Error"/>

</TransitionRestriction>
</Activity>
...
<Application Id="Start_Implementation"
Label="Start Activity Implementa..."
ToolName=
"...CMSWfImportTraverseCode"/>

...
</WorkflowProcessDefinition>

5.4 Coding and Configuration

In order to complete the implementation stack you first implement designed components.
Freed from technology issues corresponding to communication and storage you only
concentrate on the low-level business logic. E. g., the meta directory component imple-
ments an operation named “search
NodesByPath()” (see code). After
initialization of local variables
(like “query” which is in fact con-
figured outside the component and
now only identified by a name)
query parameters are set (see
“setPlaceHolderValue”) and the
query is executed (see “execute”).
The result set is then copied into a
node list (see while-loop) which is
returned to the caller.

Next, you implement executables
(called by activities). The follow-
ing example belongs to the execu-
table “CMSShowFolder”. There is
one public method named “exe-
cute()” (see code below). Access to
components is prepared by calls to
“getComponent()”. The page to be
used for displaying folders is
specified at the activity (using,
e. g., the attribute View =
”/wikicms/top.htm”). The folder
that shall be used to dynamically
fill that page is simply handed
over as an OID (see “objectId”
and “getNode” in the code below
and remember the code in the html
page). The OID is read from the
incoming request (user clicked a
folder link before). Finally, you
set the fetched node as model for
the view.

To save space, we skip the testing code for unit testing, feature testing, and benchmark
testing. And, we skip the installation file that contains the complete configuration of the
IOP application. Basically, the structures defined earlier when discussing the topology
view on IOP's architecture are instantiated as an XML file.

//CMSMetaDirectoryComponent
public CMSMDNode.List searchNodesByPath
(String searchString)
throws IOPComponentException

{
...
IOPQuery query =
getQuery("findNodesByPath");

...
try {
if(query != null) {
query.setPlaceHolderValue
(1,new,IOPPath(searchString));

rs = query.execute(ap);
while (rs.hasNext()) {
node = (CMSMDNode.Entity)
rs.nextObject();

list.add(node);
}
rs.close();

}
}
catch(IOPException e0) {...}
return list;

}

//CMSShowFolder
public void execute()
throws IOPWfException {
...
mdc = (CMSMetaDirectoryComponent)
getComponent("metadirectory");

...
String oidString =
getStringParameter("objectId");

IOPObject.Id oid =
IOPObjectId.valueOf(oidString);

...
CMSMDNode.Entity node =
mdc.getNode(oid);

...
addViewModel("Directory", node);
...

}

6 Relationship to Other Work

Based on [FHB02] we discuss some criteria for enterprise frameworks. A brief compari-
son of Abaxx eBusiness Suite, Interactive Objects ArcStyler, and CronideSoft IOP al-
ready shows the range in functionality of enterprise frameworks (see table below).

 Abaxx ArcStyler IOP

foundation J2EE/EJB UML, J2EE/EJB UML, Java, XML

central
aspect

assembling of multi-channel
process portals

applicaton-server-specific
code generation

code generation and tech-
nology encapsulation

method - Convergent Architecture any method;
tasks are predefined

focus of
functionality

personalised content deliv-
ery, CRM

architectural IDE based on
MDA

infrastructure bridging
business and technology

gui support + -- ++

protocols + -- ++

component
model

EJB EJB, Web Services IOP Components, EJB,
CORBA

persistence
mappings

-- -- ++

workflow proprietary UML state charts WPDL, WPDL-XML

aspects 2 (caching , personalization) 1 (security patterns) 8 (caching, localization, log-
ging, object type system…)

extensibility - + ++

business
themes

7 (access control, content
management, data extr…)

0 5 (access control, content
management, …)

Abaxx concentrates on ease-of-use providing a lot of tools and predefined business
themes for building personalized portals. The suite fully depends on EJB, does not pro-
vide for persistence mappings, and is rather restricted in terms of extensibility (by as-
sembling of workflows). ArcStyler comes out to be a very sophisticated IDE. It is a
specialist in generating code for different EJB containers and heavily concentrates on a
methodical approach based on Model-Driven Architecture. On the other side it does not
provide direct support for gui, protocols, persistence mappings, nor business themes.

7 Conclusions

This paper has introduced IOP, the Internet Operating Platform. IOP is a high-end enter-
prise framework combining a large number of concepts, standards, implementations, and
products to a synergetic whole. It is based on three major standards: UML for modeling,
XML for data exchange and configuration, and Java as programming language. All other
supported technologies are encapsulated for dynamic replacement or even coexistence
via configuration in the areas of front-end (HTML, XML, Java), workflow (WPDL,

UML), communication (FTP, HTTP, JMS, RMI), component architecture (EJB,
CORBA), and persistence (virtual memory, XML, SQL92, SQL:1999).

IOP yields the following benefits:
• Productivity is increased by encapsulating protocols and technologies, by visual

modeling, extensive code generation, and the architecture-driven approach.
• Quality is increased by development process support, extensive use of design pat-

terns, self-reproducing capabilities, and continuous self-testing due to the appliance
of code generation for framework development itself.

• Extensibility is increased by the concepts of IOP Interaction, IOP Workflow, IOP
Objects, IOP Components, and device/drivers for plugging in communication proto-
cols, persistence mappings, component architectures, and external systems.

• Flexibility is increased by sticking to common open standards and by configurable
interchange of drivers.

Due to its broad approach IOP can be enriched in many ways. Our near-future work will
concentrate on proving IOP in more industry projects, providing configura-
tion/modeling/design tools, further persistence mappings (MS SQL Server), further pro-
tocols (Web Services), and plug-in of specialized integration tools.

References
[Am99] Scott W. Ambler, Mapping Objects to Relational Databases, white paper, AmbySoft

Inc., 1999, http://www.AmbySoft.com/mappingObjects.pdf.
[Co01] John Cowan (ed.), XML 1.1, W3C Working Draft, http://www.w3.org/TR/xml11,

W3C, 2001
[Cr02] http://www.cronidesoft.com/products/iop.html, 2002
[FHB02] Mohamed E. Fayad, David S. Hamu, Davide Brugali: Enterprise Frameworks Char-

acteristics, Criteria, and Challenges. Communications of the ACM, Vol. 43, No. 10,
October 2000.

[ISO99] ISO/IEC 9075-1:1999 Information technology – Database languages – SQL – Part
1: Framework (SQL/Framework)

[OMGa] http://www.omg.org/
[OMGb] Workflow Management Facility Specification, OMG, 2000.
[RJB99] James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling Lan-

guage Reference Manual, ISBN 0-201-30998, Addison-Wesley, 1999.
[Ro99] Ed Roman, Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise

Edition, ISBN 0-471-33229-1, Wiley, 1999.
[Ru01] Craig Russell (ed.), Java Data Objects, JSR000012, Version 1.0, Proposed Final

Draft, Sun Microsystems Inc., 2001.
[Sc03] Stefan Schaefer, The Architecture of the Internet Operating Platform, white paper,

CronideSoft AG, Germany, 2003.
[WfMC] WfMC TC-1016-P Interface 1: Process Definition Interchange - Process Model,

official release, Workflow Management Coalition, 1999.
[W3C] http://www.w3c.org/

http://www.AmbySoft.com/mappingObjects.pdf
http://www.w3.org/TR/xml11
http://www.cronidesoft.com/products/iop.html
http://www.omg.org/
http://www.w3c.org/

	page5231: 524
	page5241: 525
	page5251: 526
	page5261: 527
	page5271: 528
	page5281: 529
	page5291: 530
	page5301: 531
	page5311: 532
	page5321: 533
	page5331: 534
	page5341: 535
	page5351: 536
	page5361: 537
	page5371: 538
	page5381: 539
	page5391: 540
	page5401: 541
	page5411: 542
	page5421: 543

