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Abstract

Database systems as basis for CAD frameworks have to provide data management as well as

transaction management facilities meeting the requirements of design applications. One of the

most important features is an application programming interface (API) supporting design tool

implementation as well as integration of design tools into the CAD framework by integrating a

database language into a host programming language. Different integration techniques have

been proposed in the past. We argue that call interfaces are the choice for object-oriented envi-

ronments. Especially, code generation can effectively be used to tackle the impedance mis-

match problem and to achieve a seamless integration, an easy-to-use interface as well as an ef-

ficient run-time environment. We exemplify this by introducing a database management system

tailored to adequate management of explicit complex-object versions. Its API integrates a set-

oriented, descriptive database language into an object-oriented, high-level programming lan-

guage (C++) by following a call interface approach. We also report on our prototype system and

corresponding experience.

Keywords: Application Programming Interfaces, CAD Frameworks, Call Interfaces, Host Language
Integration, Complex Objects, Versioning, Design Databases.

1. Introduction

Nowadays, design applications are supported by CAD frameworks [HNSB90, RS92, Wo94]. A

CAD framework can be seen as a software infrastructure, providing an application environment

for CAD tools. Among the vital components of a CAD framework are data management servic-

es [KS92] as well as activity control services [RMH+94]. The former have to deal with typically

complex-structured and versioned design data. The latter have to control the various types of

activities occurring in design processes, including transactions manipulating design data as well

as cooperative actions among designers involved in a common design task. The integration of

tools into a framework requires techniques for design-data manipulation within (tool-constitut-

ing) application programs written in high-level programming languages. This, in turn, demands

for an adequate application programming interface (API) integrating concepts of database (ma-

nipulation) languages (DML) and programming languages. Integration has to consider the fol-

lowing aspects:

• Functionality: The powerful manipulation facilities of the data model, which is responsible

for design-data representation and manipulation, must also be provided through the API. Ad-

ditionally, activity control features, e g transactional functions, are mandatory.
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• Seamless integration: If host and database language harmonize with each other and integra-

tion results in a computationally complete language, then, code readability and usability by

the application programmer are improved and contribute to acceptance.

• Architectural and performance issues: Adequate realization of the API functionality satisfy-

ing performance, perhaps the main criteria for acceptance, have to take into account a usually

workstation/server-based processing concept (data vs function-request shipping).

Concerning the choice of the host language for integration, object-oriented languages, e g C++

[St92], seem to be best suited for two reasons. First, C++ can be seen as the current-generation

programming language. And second, the provided abstract data type (ADT) concepts allow for

user-defined type extensions as well as elegant integration of API functions into C++ programs.

In this paper, we will show the benefits of integrating the database language OQL (Object Query

Language) into the programming language C++ and how the resulting API meets the require-

ments behind the above mentioned aspects. We will do so by classifying known API approaches

and identifying major criteria for assessing APIs in sect 2. Then, in sect 3, we motivate why call

interfaces are the best choice. The following three sections introduce OVM (Object and Version

Data Model), OQL, and the software architecture of our VStore DBMS respectively. The

VStore implementation follows a transformation approach mapping OVM structures to C++

structures managed by the ODBMS ObjectStore. That means that OQL statements are directly

transformed into C++ code. In sect 7, we will detail that the code generation approach used in

the VStore DBMS is effectively exploited to provide an easy-to-use and efficient call interface

for application programming. Sect 8 finishes the paper with a conclusion.

2. API Classification

Before giving a classification, we first identify some important criteria for assessing API ap-

proaches. These contribute to the quite informal measure “relative cost of human program-

ming” which is the accumulated amount of users’ work spent for data management, correctness

and integrity checking, etc, as well as respective coding. The reduction of a user’s or application

programmer’s work-to-do becomes possible with more powerful data modelling and manipula-

tion. Maier [Ma88] claims that the power of relational algebra as an abstraction of disk storage

comes from its encapsulation of iteration. Object orientation, on one hand, delivers powerful

data modelling capabilities, but, on the other hand, evolving object-oriented database program-

ming languages likely do not encapsulate iteration. Thus, the gap between descriptive and pro-

cedural processing remains. Consequently, we still have to deal with and aim at minimizing the

impedance mismatch occuring with integration of set-oriented data manipulation languages and

procedural programming languages. We will do this by leveraging from encapsulation which

leads to exploiting abstract data types. Beside this general problem, we identify the following

criteria reflecting crucial API aspects that may serve to classify and assess known approaches:

• Compilation Speed: Additional compiler passes of an API may extend overall compilation

time, which is quite high already for a language like C++, to an unacceptable amount.



• Performance: A database application at best should run as fast as a corresponding main mem-

ory program. Useful information may be collected and used during compilation to reach this

goal, but, obviously, compilation speed will decrease.

• Error Detection: This may happen either early at compile-time exploiting a-priori knowl-

edge or late at run-time. Early error detection prevents run-time errors and, therefore, is more

suitable for application coding, but often demands for extra parsing of database operations.

• Access Control: The corresponding mechanisms of the database language must also span ap-

plication programs. Thus, access to (buffered) database data must be controlled by the API.

• External Coding Costs: As Atkinson and Morrison [AM95] state, 30% of the total code for

a typical database application is concerned with maintenance of mappings between database

model, programming language model, and real world model. This unnecessary code per-

forms explicit movement and representational changes (flattening, graph reconstruction) of

data between main and backing store. Support through automatic mappings may significantly

reduce the application code, thereby decreasing the relative cost of human programming.

• Internal Coding Costs: API complexity is proportional to its implementation costs. Further-

on, its usage in the software development cycle demands for its high availability and easy

maintainability. Therefore, it should support its implementors to react to changes in the host

language, to bug reports, as well as to extensions as fast as possible.

• Learning Overhead: APIs usable through well known (programming language) concepts in-

tegrate better than proprietary solutions. Again, the relation to complexity is proportional.

• Substitutability: Product availability is heavily influenced by possible standardization which

focuses aiming of competing vendors on a common goal. As a consequence, users remain

more independent and may choose between replacable products.

Now, we introduce two known classification schemes for database APIs. The first approach

[LP83, Ne92] concentrates on syntactic integration of database operations and the second

[Hä87, Mi95] discusses binding times for database-operation integration and database-type in-

tegration. Both are suitable in the context of classic DBMSs and programming languages but

need to be reviewed in the context of object-oriented technology. We will outline pros and cons

found in the literature and, when appropriate, state our own opinion.

Lacroix and Pirotte [LP83] define the notion of call interfaces, simple host language extensions,

embeddings of database languages, and integrated languages.

Call interfaces (or call level interfaces) like the ones from IMS, ADABAS, or SQL CLI [MS93]

are orthogonal to DML extensions. In contrast, dynamic SQL ([MS93], p 254) is rather a DML

extension than a call interface and may be integrated by different techniques, one of which could

result in a call interface. Coding with call interfaces follows the syntax of the programming lan-

guage, and applications use database functionality through generic routines of given libraries.

Thus, no preprocessing concept or host language compiler extension is needed, and standard

compilers suffice. Therefore, compilation speed is optimal. On the other hand, performance is

poor because of indirections. Moreover, access control and error detection are poor, too. Special

areas for communication between programming language and DBMS are common use, but pro-

grammers are responsible for correct data allocation and deletion, which most likely is the cause



of errors. Though internal coding is easy due to the decoupled approach, external coding is quite

low-level and often cryptic. In general, the learning overhead is quite low and depends more on

the complexity of the database data model. Finally, the authors stated that call interfaces would

unlikely be subject to standardization. This has been disproved lately by ODBC [Ge95], ODMG

[BF95, Ca96], SDAI (STEP Data Access Interface [ISO22, ISO23]), and - last but not least -

the future call level interface of SQL [SQL3].

Simple host language extensions like CODASYL DML enrich programming language syntax

by a small amount requiring additional compilation either through a host language compiler ex-

tension or an often favoured preprocessor solution (to be more independent). Thus, compilation

speed is reduced. Embeddings of database languages (short embeddings) that are most often

found with relational systems (eSQL, eQUEL [MS93]) or extended-relational systems [Hü92,

Kä92, LKD+88] require complex preprocessors or extensive host language compiler extensions

especially for query handling. Because of the massiveness, compilation speed is even more re-

duced. Since the major difference between embeddings of database languages and simple host

language extensions is not syntactic integration but expressiveness of the chosen database lan-

guage, we view them as one approach and call it embedding. Performance may be better be-

cause many indirections can be eliminated in the code generation phase. Static type and opera-

tion checking, automatic and therefore reliable and easy-to-use buffer allocation, as well as ac-

cess restrictions on query results improve error detection and access control. But, problems arise

through the generated intermediate code, which may produce error messages that can only be

interpreted with knowledge about the transformation. The same holds for debugging. Code is

more readable in comparison with call interfaces, but functionality is equivalent, and, therefore,

the external coding costs are only slightly lower. Another side-effect is the minimal interaction

between host language expressions and database statements, i e, parameters of such statements

must be known symbols to the DBMS and need to be adequately declarated. In the case of set-

orientation, the strong mismatch between data structures and operations results in an unnatural

interface with a mixed syntax of host language and database sublanguage. This approach even

restricts the use of the host language (try to use recursion, for instance). An acceptable solution

is provided through the cursor concept, which is used for a one-tuple-at-a-time processing of the

result set of a select statement and allows for data exchange with host language variables

(eQUEL even averts explicit cursor definition, which is a first step to the abstraction of itera-

tion). Obviously, internal coding costs and learning overhead are increased.

Integrated languages like Pascal/R, persistent ALGOL [AM95] and others [ABGS91, ADG93,

BFS88, GNB93, E92] most often require significant host language compiler extensions (or very

complex preprocessors), so, compilation speed is even more reduced. On the other hand, this

results in a close match of data structures, e g by host language type extensions (relation con-

structor), and improves performance. Moreover, error detection and access control are extend-

ed, since, e g, even normal assignments are under API control. Furthermore, expressions may

be used in any statement and their validity spans database and host language. Though program-

ming is rather high-level, still two programming styles are mixed and the gap between proce-

dural and descriptive processing remains. Some abstraction of iteration is achieved by the “for-

each” statement. Another plus is orthogonality of persistence and type, which allows for uni-



form treatment of persistent and transient data. Therefore, the external coding costs are lowest

here. But whereas embedded SQL always uses the same database operations with almost the

same syntax regardless of host programming language (a typical exception to this is specifica-

tion of operations’ ends), integrated languages produce much more overhead for internal cod-

ing, which makes it harder to adapt to new technologies like new programming languages. As

integrated languages concentrate on one programming language, the support of multi-language

environments likely leads to the problems that actually should be avoided. Concluding, no in-

tegrated language has ever reached high acceptance because of missing substitutability.

Härder [Hä87] differentiates between operation integration and type integration in his classifi-

cation. Early and late bindings are possible for both so that four basic cases can be identified.

Early operation binding provides database operations as tokens for the host programming lan-

guage which results in one uniform syntax. On the other hand, late operation binding results in

generic procedures of the DBMS run-time system, which may be called from within a program.

A concrete database operation is chosen by parameter. Whereas the first approach is based on

an embedding (see discussion above), the latter embodies an interpretative behaviour and al-

lows for naming a database operation at run-time. Early type binding results in symbolic ad-

dressable database types, which are also interpretable in normal host language constructs. Late

type binding, on the other hand, demands for explicit extraction of database data, for instance,

out of communication areas into host language variables and vice versa.

The following consideration relates both classification schemes with each other: CODASYL-

DML and database programming languages use early operation and type binding; in contrast,

SQL module language and embedded SQL offer late type binding and the CALL-DML of CO-

DASYL provides late operation binding; late binding in both cases is found with ADABAS and

SESAM. Call interfaces principally fall into the category ‘late operation binding’ and the other

approaches (embeddings and integrated languages) into the category ‘early operation binding’.

Concluding, early binding likely reduces compilation speed and increases internal coding costs

and learning overhead. On the other hand, it improves performance, access control, and error

detection, and reduces external coding costs. Substitutability is not affected.

3. Improving Call Interfaces

The classification of Lacroix and Pirotte [LP83] reflects the historical evolution. In the last few

years, the trend is reversed back to call interfaces again. These classically feature late type and

operation binding. But the ODMG binding to C++ [Ca96] deviates from classical call interfaces

providing early type binding of schema structures and a mix of early (attribute access and in-

stance navigation) and late operation binding (queries). The STEP data access interface (SDAI)

for C++ [ISO22, ISO23] is very similar, but additionally supports both early and late binding for

some operations (Get Attribute). Though for object-oriented technology operation and type

binding belong together, binding times depend on the point of observation: early binding of an

ADT implies early binding of its methods signatures; but in their bodies, late binding may still

occur. In a concrete implementation of SDAI measured in [Ni96], a call to “Get Attribute” re-

sults in the evaluation of schema-dependent but very fast switch (case) statements instead of



metadata look-up. Thus, for SDAI as a whole, binding times are even mixed. Moreover, it is a

good idea to offer different language integrations for different application characteristics as will

be done in the future SQL standard through embedded SQL, the module language, and the call

level interface.

The recent improvements to call interfaces are closely connected to features of current-genera-

tion programming languages like C++, the most important of which is the class mechanism,

which allows for, to a certain degree, user-defined type system extensions. Thus, user-defined

data types are used through the same syntax as the built-in ones. Now, integrating data type and

operations together as ADT combined with early binding improves integration as shown above.

Moreover, ADTs allow for easily adaptable implementation changes (user-defined integration

adaptation). Additionally, inheritance and polymorphism allow for easy management of OIDs

or (typed) pointers. These concepts enable better control of query results which consist of sets

of complex objects (CO) in our case. A typed pointer may reference a CO obeying to the inter-

face of a generated ADT achieving a compromise between performance and access control.

Unfortunately, internal coding becomes more complex because early binding is reached

through generated (and in most cases schema-dependent) code. It turned out in our prototypes

that code generation itself is quite manageable, but its analysis and documentation is more dif-

ficult. Clearly, the generator part needs most attention in the case of reengineering our system.

As we have shown, call interfaces do not necessarily imply late binding. In fact, operation bind-

ing and procedural coupling of software components are orthogonal. Therefore, classification

of integration techniques should consider both aspects. Then, the two call interfaces ODBC

[Ge95] (late operation and type binding) and SDAI (see above) belong to different classes as it

should be; they are quite different indeed.

Before discussing our API approach, we introduce the corresponding DBMS, called VStore

(short for VersionStore). The following two sections will outline data model and language.

4. Object and Version Data Model - OVM

VStore implements the object and version data model (OVM) that [KS92] developed for the

management of design data. The major concepts of this model are illustrated in fig 1.

Complex Objects and Versions
Complex Objects (CO) are identifiable occurrences of CO types and are structured sets of ele-

mentary data. In its totality, a CO is described by CO attributes. It combines elementary objects

V1
V2

V3 V4
V5CO1

CO attributes

V1 V2 V3

CO2
CO

Version
version relationship

version attributes

derivation relationship

EO

intra-
structural relationship

inter-structural relationship

relationship

Fig 1: Major Concepts of OVM



(EO), which can be compared with the tuples of the relational model. In addition, EOs can be

connected via (typed) structural relationships. Obviously, it is one of the major tasks of a design

process to create “contents” of COs, i e nets of EOs. Design is an iterative process typically

leading to several (similar) nets of EOs which we call versions (complex-object version, COV).

Thus, versions are different states of the net of EOs constituting a CO. In this way, versions are

capturing the various CO states derived during the design process with the intention of a step-

by-step improvement of preliminary data in order to reach the (partial) design goal. The rela-

tionships between the versions of a single CO, representing the derivation of new versions out

of existing ones, are managed in form of a derivation graph, which, in turn, may be organized

as list, tree or acyclic graph.

Relationships between Objects / Versions
COs may be connected by CO relationships. Obviously, these relationships must also be

captured at the version level. Therefore, version relationships are refinements of CO relation-

ships, i e, the former depend on the existence of the latter. In addition to the explicitly represent-

ed version relationships, implicit relationships can be modeled resulting from data overlapping.

Overlapping can occur directly by shared EOs or by inter-structural relationships, which should

only be interpreted in the scope of configurations for consistency reasons.

Configurations
It is the goal of configuring to establish consistent units by selecting certain versions out of the

set of versions stored in the database [Ka90]. Configurations (not shown in fig 1) are occurrenc-

es of specified configuration types, which are usually associated with special integrity con-

straints expressing requirements the corresponding unit of versions has to fulfil. Configuring

usually is an explicit process of selecting appropriate versions, and configurations mainly serve

as a kind of handle for a consistent set of versions. Therefore, the versions contained in the con-

figuration continue to be the major units of processing (not the configuration). For this reason,

we will not detail the configuration concept any further in this paper and refer to the correspond-

ing literature [KRS96].

DEFINE OBJECT_TYPE AbsInterface
COMPONENTS ( Frame, PinInterval )
OBJECT_ATTRS ( id: IDENTIFIER,

name: STRING,
function: STRING )

VERSION_ATTRS ( id: IDENTIFIER,
scale_factor: REAL,
no_feedthroughs: INTEGER )

VERSION DERIVATION GRAPH IS TREE;

DEFINE LINK_TYPE Aggregation
FROM Contents TO Interface: (1,1000)
FOR VERSIONS: (1,1000),
FROM Interface TO Contents: (1,1)
FOR VERSIONS: (1,*);

Fig 2:  Applying OVM Concepts
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Example
Since we cannot explain all OVM concepts in a detailed manner, we want to illustrate the major

concepts with an example from the area of VLSI design. Chip planning [Zi88] is a very impor-

tant phase within the VLSI design process. Here, a hierarchy of VLSI cells is considered, re-

flecting a decomposition of the resulting chip’s functionality. In the following, we will refer to

the set of tools applied during chip planning as the chip-planner. A single chip-planner run con-

siders a single cell of the mentioned hierarchy together with its direct subcells. As a result, the

chip planner delivers an arrangement of the subcells within the area given for the supercell (to-

pography). Modeling the design data by means of OVM concepts may lead to structures illus-

trated in fig 2.

On the left-hand side, the instance structures are depicted; the right-hand side shows sample

data definition statements (due to space restrictions, we just give a single example for the defi-

nition of a versioned CO type and an CO/version link type, respectively). The graphical illus-

tration of the schema shows three CO types. Interface and AbsInterface describe the interface

of a VLSI cell. Whereas Interface represents a concrete interface and, therefore, contains the

EO types Frame and Pin, AbsInterface is an abstraction of the interface description (EO type

PinInterval), so that several Interface objects can be associated with the same AbsInterface. The

CO type Contents consisting of the EO types Netlist, Wire and Node describes the internal con-

struction of a cell. Considering the semantics of the relationship types Instantiation, Implemen-

tation, and Aggregation, it becomes obvious that the path Interface-AbsInterface-Contents con-

nects a supercell with its direct subcells.

5. Object Query Language - OQL

The example given in the previous subsection contains a sample data definition statement for

both a CO type and a CO/version link type. The EO type definitions were omitted, because they

are very similar to tuples in the relational data model. In this subsection, we will briefly discuss

the object query language (short OQL) being the language of OVM. We only consider those fea-

tures needed to understand the following API discussion.

Data Definition
The definition of a CO type (see fig 2) contains clauses for aggregating EO types (COMPO-

NENTS clause), specifying CO attributes and version attributes as well as defining the structure

of the derivation graph. The sample definition of link type Aggregation shows that different car-

dinality restrictions can be specified at CO and version level.

CREATE VERSION
( scale_factor := 1.0,

no_feedthroughs := 0)
COMPONENTS
Frame ( id = 1234 )
PinInterval ( id = 5678 )

( name := “xxx”,
x := 1.5, y := 1.0, len := 0.5 )

FROM AbsInterface
WHERE id = 4711;

SELECT OBJECT
FROM Contents-<Aggregation>Interface
WHERE EXISTS Interface(name = “1-Bit-Adder”);

SELECT VERSION cell
FROM Interface-<Instantiation>AbsInterface-

<Implementation>Contents
WHERE EXISTS AbsInterface(no_feedthroughs < 3);

Fig 3:  Sample OQL Statements



Data Manipulation
OQL contains statements for the creation and deletion of COs, versions, links, configurations,

as well as for update-in-place modification of COs and versions. Due to space restrictions we

just give an example for the creation of an AbsInterface version (see fig 3, left-hand side).

Data Selection
The select statement provides means for retrieving complex structures (CS). CSs consist of CO/

version nodes and relationships. On the right-hand side of fig 3 some examples are given. The

first statement retrieves CO level information (CO attributes, CO relationships), i e, the nodes

of the resulting complex structures are CO nodes. The FROM clause expresses that simple hi-

erarchies are considered consisting of a Contents object and all Interface objects used within.

In the same way, CSs can be defined in the ‘select version’ statement (see second statement)

retrieving version level information (version attributes, version relationships, EOs, structural re-

lationships). In general, the FROM clause allows the specification of nets, but with the restric-

tion that a unique root is specified. Thus, a select statement retrieves for each root CO/version

a CS as defined in the corresponding FROM clause. OQL statements may contain very powerful

predicates (WHERE clause) expressing value-based as well as structural requirements.

6. Software Architecture of VStore

As already mentioned, VStore is imple-

mented on top of ObjectStore. In the fol-

lowing we explain the software architec-

ture of our prototype system (see fig 4). A

database administrator may use a tool

(DBA) to install a schema, or to influence

OSOQL which is the DDL and DML

compiler of VStore. A Query Tool allows

for compiling queries with OSOQL and

saving the corresponding code. These

queries may later be called from within a program. We implemented a graphical user interface

to VStore upon these components to test their functionality and to have ad-hoc access.

6.1 Mapping of OVM Structures and Operations to C++

In this subsection, we consider OSOQL in order to learn how schema information is mapped to

C++ and how database operations are implemented.

6.1.1 DDL

In C++, a versioned CO is represented through an CO representative containing the CO at-

tributes (as instance variables) and one version representative for each version (set of referenc-

es). Furtheron, each version representative aggregates the corresponding version attributes and

EOs. In addition, information for internal use (metadata, relationships inherent to OVM, sup-

port for cooperation, versioning, and integrity checking) is included where appropriate.

ObjectStore ODBMS

Generator

DDL DML

OSOQL

DBA Query
Tool VCRTS

Core

Schema

Query

Application

Implementation

Application

Fig 4: VStore Software Architecture



Translation of DDL statements is done in three phases, which we explain for DEFINE

OBJECT_TYPE. First, the parser checks syntax and semantics and writes metadata (into the

ObjectStore database) reflecting the schema change. Second, the code Generator defines a C++

class and, thereby, writes a file named o_<object type name>.hh containing class definitions for

object and version representatives. Third, for each schema change implying significant modifi-

cation of existing instances schema evolution takes place in order to integrate the new classes

into the ObjectStore schema. Significant modifications occur with EXPAND, SHRINK, and

DEFINE LINK_TYPE, because these operations change the set of attributes associated with a

type implying a change of its memory layout.

6.1.2 DML

DML statement translation, which we explain for the SELECT statement also needs three phas-

es. First, the parser generates internal representations for the complex structure type given

through the FROM clause and the predicate defined in the WHERE clause. Second, a nested

C++ class named Q_<name of the query> is generated for the complex structure type. Each of

its classes contains a method expand, which is used at query execution time to build up the sub-

structures below the current node. Query execution is initiated through a call to the static meth-

od evaluate of the root class taking a list of parameters as input. The generated code for evaluate

implements the predicate in the WHERE clause and coordinates the query result construction.

Third, an executable program linked with the generated classes must call evaluate to trigger

checkout. The query result is then transferred to the client (see 7.1 for details).

6.2 Using the API through the VStore Client Run-Time System (VCRTS)

The VStore client run-time system (VCRTS, see fig 4) consists of several components. Basic

mechanisms and generic data types dependent only on our data model can be found in the Core

part. Here, handling of identifiers, user-defined links, COs, versions, components, internal

links, and address tables is determined. Implementation contains a pool of different implemen-

tations for the abstract data types the object buffer is built on. In generation phases, user input

may be used to select implementations for the construction of higher level VCRTSs, which are:

• Schema VCRTS: Decisions that may be associated with schema information like implemen-

tation of set-valued attributes are input to DDL statement translation. The resulting code rep-

resents the basic interface to user-defined types.

• Query VCRTS: DML-statement translation, especially translation of the FROM clause, pro-

duces the object buffer’s infrastructure and the (hierarchical) cursor interface that is directly

visible to the database application programmer. At this stage, decisions like “use some point-

er swizzling strategy with hierarchical cursors as control instances” may occur.

• Application VCRTS: Different data access sequences specific to different applications may

be considered by adequate buffer and cursor tuning (list sizes; backward cursor moving) at

application compile-time. The interface produced through the Query VCRTS remains un-

changed.



We force an application to be linked with the Query or Application VCRTS and access database

data through the generated nested cursors only which lets us control data access. The matter of

database operation specification (queries) is separated from the rest of the application code and

may be shifted to a database administrator. The application programmer needs far less knowl-

edge about the database system, he only has to learn ADTs and their interfaces. Now, this is just

the same as with normal third-party libraries: standard C++ header files tell the programmer

what may be done and how. The usage of database objects is much like the usage of those on

the heap. This approach, in our opinion, leverages more from the host language capabilities than

integrated approaches do.

6.3 Implementation Experience

ObjectStore from Object Design Inc [LLOW91], the infrastructure we have chosen, is a page-

server ODBMS with a very close binding to C++. The system in fact is rather a DBPL than a

DBMS in the traditional sense and provides two different embeddings to C++. The first inter-

face, called library interface, allows access to all database functionality through the use of class

libraries. As database schema construction is based on C++ type definitions and more precisely

the database data model is mainly based on this language’s type system (persistence orthogonal

to type), we have early binding for types as well as operations here. For browser-like applica-

tions not knowing a database schema in advance, the metaobject protocol also offers late bind-

ing for data access. In either case, the programmer or schema developer has to deliver type de-

scriptions for each persistent type, which is mainly a task of providing unique names. The sec-

ond interface called DML adds some keywords to the host language (persistent, foreach),

simplifies the use of database features (type information is automatically generated), and is of-

fered through a specialized cfront compiler called OSCC1 delivering C code, which may then

be compiled with a standard C compiler.

We have chosen ObjectStore because we didn’t want to build the system from scratch. Neither

its versioning facilities nor its meta object protocol seemed to be adequate for us but we have

made heavy use of many other features like persistence, transactions, queries, references

through object pointers, navigation, and schema evolution. Some restrictions on these had quite

some influence on the prototype design:

• We have built a multi-user system and could have saved a lot of work, if ObjectStore did not

lock pages; we implemented complex-object-level locking (C3-locking protocol, [Ri96]),

which allows for higher concurrency, especially in combination with our versioning mecha-

nism, and is, however, much cheaper than object-level locking. The costs are rather compa-

rable to those of page-level locking since components outnumber COs.

• The query facilities are quite flat in that the input is a single collection of object pointers; this

also holds for the output. We implemented a query transformation approach splitting OQL

queries into a hierarchy of ObjectStore queries glued together with some code.

1. Remarkably, the vendor will substitute this integrated solution with a preprocessor approach because
of poor acceptance from industrial users disliking to rely on a non-standard compiler and maintainability.
Meanwhile, schema parsing has been extracted out of OSCC into a new schema generator.



• A set of objects may be versioned together independent of type. Workspaces qualifying at

most one version per object provide access to them. Though manipulation of several versions

of the same object at the same time, which is a key concept in our system, is possible with

several workspaces, access gets more complex and data exchange between workspaces more

indirect. In addition, the mechanism is very space consuming and prevents clustering.

• The metaobject protocol has been designed for the host language and is not extendable, e g

to support version links; we built a metadata manager from scratch. Though this alleviates

porting, we would, today, choose a hybrid approach to save the effort.

7. Application Programming Interface

In nowadays systems, code generation takes place for schema data and non-associative opera-

tions (say navigation). We transfer these mechanisms to set-oriented database languages, i e our

prototype language coping with versioned COs. The goal is to enable application programmers

to leverage from the given data model and query language as much as possible through pure

C++, and at the same time averting the mentioned disadvantages of call interfaces.

As CAD applications show high referential locality as well as a-priori knowledge about the pro-

cessing context, we have chosen and implemented an object-buffer-based processing model.

With the object buffer at its heart that is loaded through checkout queries, an interface is pro-

vided to locally manipulate the buffered data. Any changes of buffered data are automatically

propagated back to the server at commit. This processing model called checkout-work-check-
in minimizes communication between server and workstation, allows for catching server fail-

ures, and maximizes application performance.

A VStore application checks data out into a complex-object buffer placed in the same virtual

address space using precompiled queries. Several queries may be executed per application and

their results (the CSs) are stored in multiple partitions (one for each query), which overlap in

shared database COs/versions. Here, we will not discuss merging modified buffer contents and

new query results or propagation of changes in one buffer to another; so, for the rest of the pa-

per, we stick to the simple model.

We realize that applications do not always have a closed processing context, i e, some are not

able to describe all needed data in advance. To support open processing contexts, successive

single-COV loading may be used. Starting from a single COV, an application may browse the

corresponding version derivation graph and load neighbours when needed.

Because of automatic change propagation at commit, object flags for update operations are used

at run-time. The resulting overhead can significantly reduce performance of operations espe-

cially of those working on EOs, since these mainly fill the buffer, i e, their number is quite high

compared to that of COs, and they are quite small in size (again compared to COs). Using pre-

claiming for checkout (tell the system what you intend to do with the query result) to adapt the

object buffer to application needs we avoid this overhead for read-only data.



7.1 Checking out the Processing Context

For the following discussion, imagine that the Schema VCRTS has just been built and the sche-

ma is now stable. A typical VStore application knows this schema and uses precompiled queries

describing the processing context. Sometime between schema translation and application com-

pile time these queries have to be compiled using the Query Tool. The resulting code (C++ class

Q_cell for the chosen query) must be linked to the application. Part of the code representing the

example query translated to ObjectStore DML looks like this:

(1) cs [: !nAbsInterface [: no_feethroughs < 3 :].empty() :]

‘cs’ represents the extent of the root in the CS defined in the FROM clause. Everything between

‘[:’ and ‘:]’ is an integer expression to be evaluated on each element of ‘cs’. Regard that the path

expression on ‘AbsInterface’ (‘nAbsInterface’ is the internal name) results in a nested query.

The EXISTS predicate is translated to ‘collection not empty’. If we extend the WHERE clause

to ‘status = $p AND EXISTS ...’ the result will be:

(2) cs [: status == V_p && !nAbsInterface [: no_feethroughs < 3 :].empty() :]

To compare an attribute like ‘status’ of ‘Interface’ to a query parameter ‘p’ a global (local to the

query class) variable ‘V_p’ is defined, which may be used anywhere in the expression. The

same mechanism is used to allow comparisons between objects of different nodes in the CS.

To trigger checkout a call to the static member function ‘evaluate’ is sufficient which results in

two execution phases. First, a set is allocated and, topdown, each of the CS nodes is linked to a

COV that may qualify. Second, this set is filtered through the predicate in the WHERE clause.

The result is then locked on CO level. Internally, short ObjectStore transactions are used for

read and write phases.

Afterwards, the result is transferred to the client. Behind the scenes, it is copied into a newly

allocated database segment called application segment. There, address tables are created that

manage old and new addresses of COs, COVs, and EOs and other useful information like access

right (read, derive, update) to or update states (unchanged, updated, inserted, deleted) of an en-

try. In addition, pointer swizzling takes place which transforms some (again depending on the

query) of the inter object references in the application segment. While developing on top of Ob-

jectStore we decided to execute checkout, work, and checkin in subsequent transactions so that

page-level locking of ObjectStore does not interfere with our CO-level locking protocol. But

then, references to and from database objects must be kept consistent over transaction bound-

aries. This is possible with special ObjectStore classes for pointers from the heap into the data-

base but not vice versa. In addition, we saw a big problem in dynamically linking the generated

code into the running C++ application. Therefore, we decided to execute checkout, work, and

checkin in separated processes. This lead us to a quite elegant solution named persistent object

buffer (see fig 5). Checkout and checkin are generic ObjectStore clients (an exception is the

usage of generated query classes in checkout) copying data from one database segment into an-

other and freeing locks when finished. The application itself is also an ObjectStore client but



works on the segment holding the query result only. Cache management at the client and map-

ping of pages into virtual main memory is subject to ObjectStore.

We identified the following advantages with this approach.

• Checkout and checkin now logically belong to the VStore server (the connection to ‘Appli-

cation’ in fig 5 reflects inter-process communication) which is an ObjectStore client and may

physically be on the server or client machine.

• The application has a smaller footprint (needs less main memory).

• The single-user object buffer is now directly reflected in our architecture. A lightweight per-

sistent object service like PSE from Object Design Inc would further improve application

performance and further decrease its footprint.

• Because of stronger decoupling from the server and reuse of persistence mechanisms the im-

plementation of application-controlled interruption of program execution, i e interruption of

the transaction on the object buffer, can significantly be alleviated.

Unfortunately, the problem of keeping ref-

erences consistent over transaction bound-

aries returns with the last point or when sin-

gle-COV-loading shall be used. While this,

clearly, is no severe performance penalty

for the former it would be for the latter,

since such interrupts may be frequent.

For the former a solution is to provide entry

points, or roots, into the application seg-

ment (you also have to save such things as

the segment’s name or address). Restoring

the application simply means starting from

these roots (this is more difficult for stop-

ping than for pausing the application).

There are at least two solutions in the case

of the latter. Either locking on the object

buffer is switched off, if possible, or demanded COVs are copied into yet not locked pages. For

the former, API implementors have to synchronize the loading process against the application.

The latter implies shifting some VStore server functionality into the application to update ad-

dress tables and object references and, if specified, swizzling pointers. Because switching off

locking is not supported we allocate new pages.

7.2 Object Buffer Manipulation

With hierarchical or nested cursors reflecting the complex-structure-oriented view on query re-

sults we support local work on buffered data. The query’s FROM clause is used to generate a

nested cursor class named CURSOR_<name of the query> in a very similar way to generating

Fig 5: The Persistent Object Buffer
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the query class. Each node in the directed acyclic graph wraps, i e controls access to, an CO type

in the FROM clause. The top node may only reference roots of CSs, and each son of a node may

only reference buffered or newly inserted partners of its father for the given link type between

them. The cursor class has only one instance. And only with this, updating may take place be-

cause we experienced a massive overhead for simple operations with an earlier prototype sup-

porting many cursor instances. But as it may be useful to remember visited objects, we allow

instantiation of read-only nested cursors that conserve cursor states.

Nested cursor methods exist to

control iteration on all levels (first,

next, previous, last), navigation

within a single CS (using the deref-

erencing operator), and navigation

on the version derivation graph

(successor, nextSuccessor, prede-

cessor, nextPredecessor). Manipulation of buffered data (EOs, COs, and COVs) includes read-

ing/writing attribute values, creating/deleting objects, and setting/unsetting links. Again, nested

cursors provide the interface and, therefore, adequate access control. In addition, they are used

to specify operands for binary operations like “connect” which sets a link between two objects.

Fig 6 shows part of the generated class definition of a nested cursor. The method ‘setTo’ allows

for conserving the state for binary operations or backtracking. One of the CO cursors that build

up the nested cursor is shown in fig 7. ‘getSurrogate’ delivers an identifier for an CO/version

the programmer may use as substitute in subsequent operations. ‘object’ leads to the CO repre-

sentative and ‘frame’ to a component. Attribute access methods and cursor iteration methods

follow. Cursors for EOs are quite similar and, therefore, omitted.

The usage of these methods is illustrated in fig 8, which shows an excerpt of a sample applica-

tion program changing a PinInterval’s position and updating corresponding Pins. The first two

lines contain pointer declarations for CO cursors, which may be set to some version nodes (nav-

igation in CS in lines 6 and 7) after transaction begin (line 4) and query execution (line 5) to

abbreviate following code. The AbsInterface is noted (reading an attribute in line 9) and

changed in its x coordinate (writing an attribute in line 10). All Interfaces (lines 11 to 17) that

class cell_CURSOR {
public:

cellInterfaceCursor* Interface();
cellAbsInterfaceCursor* AbsInterface();
cellContentsCursor* Contents();
cell_CURSOR& setTo(cell_Readcursor *);

... Fig 6: Nested Cursor

class cellAbsInterfaceCursor : public cellVOperations {
public:

cellAbsInterfaceCursor();
virtual void connect(cellOperations*, cellLinkNames);
virtual Surrogate* getSurrogate();
virtual void createSuccessor();
cellAbsInterfaceObject* object();
cellFrame_AbsInterface_eobject* frame();
char* status(); void status(char*);
void setFirst();  void setNext(); void setPrevious();
void succ();  void nextSucc();

... Fig 7: Subcursor



are incorrect now (cursor as parameter in line 12) get new versions (line 13). We then navigate

through the implicitly updated version derivation graph (line 14), reposition a Pin (line 15), and

set a link between the new Interface and the AbsInterface (binary operation in line 16)2. Line

17 switches iteration to the next CS.

‘createSuccessor’ is a very good example for

enriching an API to decrease external coding

costs; its algorithm shall be explained now. Let

‘ifc’ be a cursor on ‘Interface’ already posi-

tioned as in the sample code. The call to ‘cre-

ateSuccessor’ will check the access right to the

‘Interface’ and return with an error if it is

‘read’ only. Else a new COV is created which

implies construction of a new version repre-

sentative with a temporal identifier, setting its

access right to ‘update’, updating internal help-

ers like reference counts and status informa-

tion, connecting the new version with its CO

representative, and updating the version deri-

vation graph. If successful, the new version is appended to an additional successor list in the

cursor which is used to differentiate between navigation in CSs and navigation in version deri-

vation graphs. The temporal identifier becomes persistent at checkin or on execution of the ‘get-

Surrogate’ method because a surrogate shall survive process boundaries.

7.3 Checking in the Changes

Propagating updates is one of the steps performed within the method finishing the application

transaction (line 18 in fig 8). These steps are:

(1) Opening an ObjectStore transaction;

(2) (Preliminary) propagation of updates;

(3) Checking consistency;

(4) Repairing inconsistencies through application-specific exception handling;

(5) a) Aborting the ObjectStore transaction in case of (non-repairable) consistency violations;
b) Committing the ObjectStore transaction otherwise;

(6) Releasing (VStore-) locks and deleting the application segment.

Obviously, the abort operation (for VStore transactions) is pretty simple. It just consists of per-

forming the last step of the outlined process.

2. As the two used CO cursors are part of the same nested cursor, connecting in fact works with only one nested
cursor here. If objects shall be connected across CSs, the above mentioned read-only cursor is needed.

Fig 8: Sample Application Code

cellInterfaceCursor *ifc;
cellAbsInterfaceCursor *aifc;

TX adop = TX::begin();
q_cell->evaluate();
ifc = q_cell->interface()->moveFirst();
aifc = q_cell->interfaceA()->moveFirst();

cout << “Changing:” << aifc->id() << endl;
aifc->pinInterval()->moveFirst()->x(newx);
do {

if (!correct(ifc)) {
ifc->createSuccessor();
ifc->moveSuccessor();
ifc->pin()->x(calcX(aifc));
ifc->connect(aifc); }

} while(ifc->moveNext());
adop->end();
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Incorporating the checkin step into this process has the advantage that the application program-

mer is not unnecessarily burdened by having to deal with explicit update propagation (external

coding costs are reduced). The overall process is performed within a separate operating system

process, which, in turn, is an ObjectStore client being usually executed on the ObjectStore serv-

er machine in order to minimize communication overhead. This process depends on the gener-

ated Schema VCRTS because of the contained consistency checks and of application-specific

exception handling for fixing consistency violations. The latter, if used, implies that an (appli-

cation-) program-specific process must be provided. The corresponding overhead, at first

glance, seems to be a disadvantage but, actually, it is not, because it can be generated as soon

as the exception handling is coded.

The (preliminary) propagation (step 2 in the list given above) consists of the following steps:

(2.1) Collecting ‘update information’.

The global address table contains flags indicating the update states of all COs, COVs, and

EOs contained in the object buffer. During local work corresponding flagging is per-

formed by generated update operators (see sect 7.2). In order to only propagate the net

effect, address table information is exploited to determine the smallest set of updates

which are to be performed on the VStore database.

(2.2) Performing the actual propagation of updates into the database (by updating, inserting, or

deleting COs and/or COVs) as indicated by the information gathered in step 2.1.

At first sight, at least the second step seems to depend on schema information and, thereby, re-

quire code generation. Actually, generating code for change propagation is only one possibility.

Instead, we implemented a generic approach because the main reasons for code generation (per-

formance enhancement, early error detection) don’t apply to these modules. Descriptive access

to the database is the crucial performance factor, and early error detection is primarily useful in

application development.

8. Conclusion

First, we have identified important criteria for API comparison. Then, existing API classifica-

tion schemes have been discussed, and some deficiencies in transferring experiences to object-

oriented environments have been detected. Furthermore, solutions to the primary problems of

call interfaces were explained. Especially, performance, error detection, access control, exter-

nal coding costs, and learning overhead may significantly be improved by code generation

techniques (see assessment of our prototype in the rightmost column of tab 1). Moreover, the

last few years have proved substitutability for call interfaces through several standards.

An application programming interface for a DBMS managing versions of COs on top of an

ODBMS and experiences gained in its implementation have been described. We have been

making heavy use of code generation concepts for query integration thereby shifting interpre-

tation complexity to compile-time and providing early binding for operations and types to sup-



port application development. Unfortunately, internal coding costs are higher and need further

investigation.

We tackle the impedance mismatch problem by encapsulating COs in nested cursors generated

from complex-structure descriptions of FROM clauses of queries. This simplifies internal and

external coding and allows for application tuning, because of complex-structure-oriented point-

er swizzling and hiding from implementation-specific details like storage structures used.

Notes: - : bad o : medium o+ : nearly good + : good

Though integration has been significantly improved, the gap between descriptive query speci-

fication and procedural application development remains. The only tidy solution is an integrated

language based on some extendable programming language. But as such an approach will never

find high attention, we concentrate on further improvement of the integration degree of call in-

terfaces. Especially, compilation speed needs to be further ameliorated.

The biggest coding problems encountered, were provoked by the difficulties of dynamic load-

ing of generated code into running C++ applications. In addition, metadata management, generic

access to objects, and providing run-time type information accounted for the main implementa-

tion overhead in our prototype. Next, we will study integration with the Java programming lan-

guage [Java95], which promises built-in support for dynamic class loading and replacement,

run-time type information, and secure memory management. This project will be aimed at in-

tranet-based CAD frameworks.
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