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Abstract

1 Introduction

Database management systems (DBMS) store and manage
large sets of shared data whereas application programs per-
form the data processing tasks, e. g., to run the business of
a company. Often, these programs are written in various
programming languages (PLs) embodying different type

systems. Thus, DBMSs should be “multi-lingual“ to serve
the application requests. This is typically achieved by pro-
viding a DBMS and its database language (DBL), like
SQL2, with an own type system. To access the database
(DB), a DBL/PL-coupling called database API (DB-API or
API for short) is required.

1.1 DBL/PL-Couplings

The main problem of coupling DBLs and PLs is the imped-
ance mismatch between them, resulting from differences in
the type systems or programming models. While, for exam-
ple, relational DBMSs offer a quite simple and flat data
model, programming languages provide many helpful type
constructors for the design of complex information models.
Furthermore, relational DBMSs support set-oriented, de-
clarative queries (n-set-oriented queries), while PLs are
typically navigational, that is, the programmer has to man-
ually follow links between single objects or iterate collec-
tions of objects.2

Another aspect is that software technology is changing
rapidly. Thus, for APIs it is important to exploit approved
and stable base concepts, which, additionally, are flexible
enough to be adapted to a changing system environment.
The paradigm of object-orientation comprises a set of con-
cepts fulfilling these requirements. It has not only consid-
erably influenced application development, but it also
forms “a new great wave in the database ocean“ - the
object-relational wave [23]. What can be observed here is,
as the data models are coming closer, the differences seem
to vanish more and more. The most important concepts on
both sides are references and abstract data types. Refer-
ences allow, similar to pointers, to directly model (n:m)-
relationships between object types. Thus, complex object
support is also needed at the API. Abstract data types
(ADT) allow to define interfaces and to hide their imple-
mentations; modeling of ADTs is done with user-defined
types (UDT) in object-relational DBMSs (ORDBMS) and
with classes and interfaces in OOPLs. ADTs allow for the
extension of the type system without extending the under-
lying grammar. Thus, many needed extensions for a cou-
pling can be implemented through ADTs and obviate
grammar extensions.

2. Extensions in OOPLs support a restricted form of querying (evaluation
of simple search arguments on collections: 1-set-oriented queries). Never-
theless, applications still tend to be navigational.
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It has always been a hard problem to provide appli-
cation programming interfaces (API) for database
systems without sacrificing some advantages of eit-
her the database management system or of the pro-
gramming languages. Various approaches have
been proposed. We discuss APIs with respect to
SQL3 and its object-relational extensions as well as
to object-oriented programming languages. We ar-
gue that generated call-level interfaces (CLI) are
better suited than classical CLIs and language em-
beddings to couple database languages to object-
oriented programming languages. Profiting from
code generation and early binding of type informa-
tion, generated CLIs improve the pros of embed-
dings while obviating the cons of classical CLIs. We
propose an architecture for generated CLIs consi-
sting of a cache module, a generated run-time sy-
stem, and a compiler that generates parts of the
(generated) CLI. The partial generation is specified
using a configuration language to describe applica-
tion-specific early binding of type information cor-
responding to data models, schemas, and queries.
With this approach, we can control the sharing of
database type information for application programs
as well as the deferrable adaptation of applications
to different needs by extending interfaces and by re-
placing implementations.
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Different couplings have been proposed in the past [9,
13, 14, 15]. Programmers seem to prefer simple interfaces
based on well-known concepts in the context of application
programming; CLIs, e. g. JDBC [5, 7], have always been
accepted best, since they can be combined with the use of
standard compilers. API developers, on the other hand,
seem to prefer solutions that lead to more elegant inter-
faces (embedded DBLs, e. g. eSQL or SQLJ [19]); most
often precompilers or extended compilers were used to
reach this goal.

In order to access the DB via the API, some preparation
tasks are needed; each DB statement has to be compiled,
optimized, and bound to the data structures (as described in
the DB schema). The pure CLI approach essentially con-
siders the DB statement as a string to be passed to the
DBMS at run time. Therefore, (most of) the tasks prepar-
ing the DB access are to be deferred until run time. Hence,
DB access involves additional overhead burdening the
response time. Since binding of DB operations (to DB
schema information) is “late“, DB schema changes can be
adjusted until the latest time possible. Hence, data indepen-
dence is preserved to a maximum degree. In contrast,
embedded DBLs shift all preparation tasks to compile time
which improves run-time performance and enables more
choices to react to errors. On the other hand, early binding
makes compiled programs depending on DB schema
changes. Hence, such an approach increases data depen-
dence.

1.2 Our Goal

We want to show that by following a generative approach,
we are able to ‘equip’ CLIs with the advantages of embed-
dings. Thus, we can provide APIs which combine the best
of both worlds, i. e., are efficient, have strong typing and
early error handling, as well as a high degree of data inde-
pendence. These APIs that optimally couple DBLs like
SQL3 [10, 11] to OOPLs like Java [1] or C++ [21] are con-
figurable specializations of CLIs, named generated call-
level interfaces.

Such a generative approach allows to properly adapt the
API to the application’s needs. We will see that especially
the selection of suitable binding times (early, late) for
interfaces and implementations of API functions and the
choice of an adequate pointer swizzling strategy for DB
objects cached at the client side are crucial issues in that
concern.

In the following, we will first introduce CLIs before we
sketch a running example to explain the concepts. After-
wards, the mapping of SQL’s data model into data models
of OOPLs is discussed. We contrast late binding to early
binding and introduce virtual late binding as an interesting
compromise. Furthermore, the integration of the different
programming models on both sides of the API is explored.
Then, we introduce a configuration language that allows to
specify the adaptation of the API to different needs.
Finally, we step through a sample program again contrast-
ing binding times.

2 Generated Call-Level Interfaces

In this section, we want to detail the notion of generated
CLIs and introduce our approach. The first subsection iden-
tifies important concepts to improve CLIs and defines gen-
erated CLIs. Afterwards, we discuss our generative ap-
proach, especially by emphasizing the configurability of the
API.

2.1 Preconditions and Definition

Many advantages of language extensions like embeddings
can also be achieved for CLIs. But, the distance between the
concepts of the database language and those of the host lan-
guage is an important factor for a successful coupling. The
following concepts of advanced database languages narrow
the gap to programming languages.
• An extensible type system exists for data modeling (col-

lections, user-defined types, and user-defined functions).
• A surrogate concept is the basis for identification and

referencing of database objects.
• References between database objects (often as set-valued

reference attributes) allow for the direct modeling of
(n:m)-relationships.
Regarding OOPLs, we identify the following concepts

that allow to improve CLIs.
• Extensible type systems support the definition of user-

defined ADTs through interfaces and classes that can be
used very similar to built-in data types. Thus, database
objects can be treated like programming language
objects.

• Encapsulation by using interfaces allows for the replace-
ment of underlying classes and, in consequence, the
choice between equivalent implementations with differ-
ent characteristics.

• Polymorphism and subtyping provide a compromise
between pure early and pure late binding and, therefore,
open a spectrum of gradual early binding which we also
call polymorphic binding.
Code generation is needed to introduce early binding of

type information and especially, the early binding of appli-
cation developer knowledge to certain type information.
This leads us to the following definition [16].

Definition: A generated or early-bound call-level inter-
face (gCLI) is a CLI introducing early binding of type in-
formation usually by code generation at compilation time
of schemas, queries or applications.
We propose a specialized compiler to support the provi-

sion of early bindings and the necessary code generation.
But, in contrast to embeddings, such a CLI compiler is
decoupled from the OOPL compiler in order to reduce
dependencies. The CLI compiler is based on the database
language, that is, it extends the database language compiler
(like storage structure languages as part of database lan-
guages) or analyzes the database language compiler’s out-
put (meta-data, dictionary data).
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2.2 Architectural Overview

Figure 1 gives an architectural overview of our approach.
At the left-hand side, we see the components needed during
run time of an application program: the application program
itself, a generated run-time system (gRTS), a cache module,
as well as the DBS.

Location transparency for access to database objects
through the client is provided by the cache module. It sup-
ports communication with the DBS, abstraction of object
mapping, and (set-oriented) access to DB objects.

Operations of the API are implemented by the gRTS. It
contains the operational semantics of the API and provides
late-bound and, optionally, early-bound interfaces imple-
mented on top of the cache module. By the gRTS, applica-
tion programmers get interfaces for database access and
session control (transactions). In addition, they can use
cursors or iterators to work with the instances. A dictionary
provides meta-data access and may be accessible by the
programmer, too.

The CLI compiler (see figure 1, right-hand side) pro-
duces fragments of the gRTS and the cache module. It per-
forms early binding of type information and allows for the
replacement of equivalent (early-bound) implementations
(e. g., classes that implement interfaces). In the following,
we discuss the task of the CLI compiler in more detail.

2.3 The CLI Compiler

Specifications of the application programmer in a configu-
ration language resulting in a configuration program are an-
alyzed by the CLI compiler to produce early bindings for
type information specific to schemas and queries. The gen-
erated code extends the core run-time system. As figure 1
shows, the CLI compiler may choose from a pool of code
fragments, interfaces, implementations, and ready-to-use
components. In addition, it refers to meta-data (DB schema,
DB queries) in order to generate type- and query-specific
functions. The ‘+’ in figure 1 represents extensions that are
needed to manage configuration data. In the following, we
discuss the influences of the CLI compiler on cache module
and gRTS. Let us start with the cache module.

Access and Object Mapping: These methods support ob-
ject access based on database object identifiers (OID) and
corresponding local identifiers (LID) in virtual memory
(pointer, reference) [22] as well as the mapping between
OIDs and LIDs. Access through OIDs is location transpar-
ent but not as efficient as access through LIDs which omits
residency checks and/or reservation checks of referenced
objects. In order to speed up access to objects tailored im-

plementations of operations in the run-time system may be
generated by the CLI compiler.

The following components (of the cache module) can
optionally be configured. To support application-oriented
prefetching and pointer swizzling [12], specific control
mechanisms are implemented in the run-time system while
the basic mechanisms belong to the cache module. There-
fore, the following two components cross borders.

Prefetching: If the application knows in advance which
objects are needed in the future when calling certain meth-
ods of the API, it is useful to early bind this knowledge.
Thus, this knowledge can effectively be exploited, to
prefetch needed objects in a single step. The CLI compiler
can translate this knowledge into additional code for meth-
od bodies calling corresponding fetch operations.

Pointer Swizzling: If the application knows in advance,
which references between objects are often dereferenced
(say more than 2 times), it is useful to early bind this
knowledge in order to trigger reference transformation
(pointer swizzling [22]). Since dereferencing has to know
if references are swizzled or not, a swizzling check is need-
ed, which is also called lazy-if. Similar to location transpar-
ency we provide reference transparency, which allows for
automatic dereferencing of OIDs and LIDs. Again, the CLI
compiler may produce efficient implementations that omit
the swizzling check in the run-time system.

Before listing the gRTS functions, which can be adapted
via the CLI compiler, we want to mention that the gRTS is
divided into an external layer and an internal layer. Appli-
cation programmers use the external layer while API
implementers use the internal layer to build the external
layer. Each layer is divided into late-bound and early-
bound interfaces. At each layer, the decision which kind of
interface to use is important for the implementation of the
next higher layer (external layer or application, respec-
tively) because of the different syntax. The CLI compiler
can either let interfaces reuse existing generic (late-bound)
implementations or generate more efficient implementa-
tions that use generated (early-bound) interfaces. The fol-
lowing gRTS components can be configured.

Session Control: Local savepoints on the client including
all cached database objects and current cursor states are
based on the conversion of objects into byte streams and
vice versa. This conversion may either occur in a generic
method or using generated conversion methods for the var-
ious object types.

Database Access: In addition to the generic query class
“SQL.gCLI.Query” that can handle query results of arbi-
trary select statements, each query may be represented by a
generated specialized query class “SQL.gCLI.Generat-
ed.Query<name>“3. An easy thing to do is the early bind-
ing of column names of the result set. More work has to be
done in order to early bind complex-object structures. We
come back to this point later.

3. Queries must be named in this case. The name may be specified in the
configuration program.

Pool
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Figure 1: Architectural Overview
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Result Construction: Also based on conversion of byte
streams and virtual memory objects, result construction,
too, either occurs in a generic way or has to take replace-
able storage structures for objects, indices, and collections
into account.

Instances: Besides replaceable storage structures for in-
stance collections, attribute collections, and set-valued at-
tributes the CLI compiler can optionally configure type
specific indices for such collections. The CLI compiler
produces corresponding code that, for instance, knows if
an index is available or not for the current operation.

Dictionary: The dictionary itself is rather generic in na-
ture. But since our object types provide (replicated) meth-
ods for meta-data access, these methods can be optimized.
Instead of asking the dictionary in the body of the method,
it is possible to hardwire known meta-data in advance (like
the name of an object type).

Cursor/Iterator: In our architecture this is the most inter-
esting module for the CLI compiler. The CLI compiler can
generate statements containing meta-data as constants into
method bodies. Attribute access, for instance, can be accel-
erated by such an optimization since it saves the dictionary
lookup at run time. Other configurations may affect
prefetching and pointer swizzling. Since method calls trig-
ger prefetching actions or transformation actions, the CLI
compiler can also generate code into the method bodies
calling predefined or generated actions.

The outline of our approach given in this section is
meant to prepare the following discussions. We will start
these discussions by introducing a simple application sce-
nario, which will serve as a running example.

3 Example

Developed for the evaluation of ODBMSs the OO7 bench-
mark [4] is also a candidate for discussing ORDBMSs.
Since we do not deal with measurements here, but concen-
trate on concepts, we narrow our view to a small part of the
benchmark which we name MicroOO7.

The OO7 benchmark defines a database schema with
several entity types. The assembly hierarchy, which we
skip here, manifests assembling of composite parts (Com-
positePart) given by a design library.

Each CompositePart is associated with a describing
Document and contains a set of AtomicParts that are
interrelated by explicit Connection instances (see figure
2). A CompositePart has exactly one such Document, and
each Document belongs to exactly one CompositePart. A
CompositePart has a number of AtomicParts (a benchmark
parameter), one of which is marked as the root. Each

AtomicPart is connected with a fixed number of Atomic-
Parts (also a benchmark parameter). Each such link is rep-
resented by a Connection that carries additional attributes.

Figure 3 shows how a complex object of the OO7 bench-
mark might look like in the database. The entities are rep-
resented using row types whereas relationships are
modeled by reference attributes. Thus, the instantiated ver-
tices become references in an SQL3 database4.

We use the MicroOO7 schema as a sample basis for the
discussion of API functions; the database excerpt depicted
in figure 3 will be used to explain query evaluations.

4 Mapping SQL’s Data Model

Now we discuss general aspects of the ADT concept that is
found in most advanced data models. Afterwards, we dis-
cuss the mapping of SQL concepts.

4.1 General Aspects of ADTs

The concept of ADTs is very important for the DBL/PL-
coupling because of its strong encapsulation. ADTs define
interfaces which may have several (replaceable) implemen-
tations. In OOPLs ADTs are implemented using classes.
Some OOPLs like Java allow to explicitly distinguish be-
tween interfaces and implementations (interfaces and class-
es). In order to exploit the ADT concept for mapping, we
can to distinguish three cases. First, a seamless coupling can
be reached if the concept of ADTs is similar in DBL and
PL; thus, DB-ADTs can be mapped to PL-ADTs. Second
(sets of) DB-operations are mapped to PL-ADTs. Third,
DB-types are mapped to PL-ADTs; for example, for row
types the mapping may specify column or attribute access
methods with different degrees of early binding for method
signatures and their implementations.

4.1.1 Interfaces of ADTs
In the following, we discuss different degrees of early bind-
ing for interfaces. Operations or methods constitute the in-
terface of a class (including observer functions and mutator
functions for attributes). Thus, the binding of an interface
may be reduced to binding corresponding operations. To
explain the main idea, we concentrate on attribute read ac-
cess for row types. Starting discussions with generic solu-
tions independent of row type and attribute we proceed with
type-specific and attribute-specific solutions.

4. Due to simplicity, we omit corresponding SQL3 data definition state-
ments. An intuitive understanding of the schema structures is sufficient to
follow the discussions in the subsequent sections.

Figure 2: MicroOO7 Schema (ER diagram)
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A generic mapping defines a signature for a method
GetAttribute of the class Row that is capable of read-
ing arbitrary attributes of rows of arbitrary row types.
Below we give the definition of the signature and the usage
of the method.
// as method of class Row
Attr GetAttribute(String rowtype,
String attribute, String attrtype)
{...}
// usage:
value = comp_part.GetAttribute(
“CompositePart”, “buildDate”, “Integer”);

The result value is of type Attr, which is an attribute
container for values of all possible attribute types. The cur-
rent row comp_part is of type Row and allows to call the
method GetAttribute by using the dot-notation. The
first parameter rowtype of type String contains the
name of the row type of the current row. The second
parameter attribute of type String specifies the
name of the wanted attribute. The third parameter attr-
type of type String is to specify the name of the
expected attribute type.

A disadvantage of this approach is that the correctness of
the parameter values can only be determined at run time.
Another disadvantage is that later calls of type-specific
operations on the attribute value demand for explicit type
casting.

With the following signature more type information is
bound early. Two differences are obvious. First, instead of
specifying the attribute type by a string, an output parame-
ter value of the attribute’s type (Integer) is used. Second,
void indicates that no return value is delivered.
// as method of class Row
void GetAttribute(String rowtype,
String attribute, Integer value)
{...}
// usage:
comp_part.GetAttribute(“CompositePart”,
“buildDate”, value);

A disadvantage is the need for implementing one method
per attribute type. And still, the consistency of the attribute
type and the names for row type and attribute must be
checked at run time.

The parameter for the name of the row type may be
omitted in an alternative signature, if the name can be
implicitly determined. This is easily implementable with
an OID containing a hint to the row type. The OID can be
part of the row. Unfortunately, this does not avoid the run-
time checks, but, at least, it simplifies the interface as is
shown below.
// as method of class Row
void GetAttribute(String attrname,
Integer value)
{...}
// usage:
comp_part.GetAttribute(“buildDate”, value);

A further improvement is possible by defining attribute
access methods for concrete row types. We map the row
type CompositePart to a subclass of Row named Com-
positePart.

// as method of class CompositePart
void GetAttribute(String attribute,
Integer value)
{...}
// usage:
comp_part.GetAttribute(“buildDate”, value);

As a second possibility, the name of the corresponding
generated class can be determined dynamically by reusing
Java [1] concepts in two ways. First, since Java provides
run-time type information (RTTI) for all objects in a dic-
tionary, the name of the class of a given object may easily
be found out at run time via the dictionary interface (Java
Reflection API). Second, the GetAttribute method of
CompositePart overwrites the inherited method of
Row and, therefore, knows which row type is evaluated.

This scope reduction requires schema-specific code gen-
eration. The row type must be mapped to a separate class.
On the other hand, method evaluation is more efficient,
since less (generic) parameters have to be checked.

The overwritten method for attribute read access enables
the application to switch from using the inherited method
to using the new overwritten method without changing
application code. If the parameter for the class name is part
of the method’s signature, as is with the first two signatures
given in this subsection, it must also be part of the over-
written method’s signature.

A maximum of performance can be reached by also
avoiding the check of the attribute‘s name and type.
class CompositePart ...{ ...
Integer GetBuildDate() {...} }
// usage:
value = comp_part.GetBuildDate();

Here, the number of methods to be generated is propor-
tional to the number of attributes in the class. But, the code
calling this method is short. Moreover, the correctness of
the call can completely be checked at compile time.

4.1.2 Implementations of ADTs
Principally, binding type information for implementations
is independent of binding type information for correspond-
ing interfaces. Possible combinations will be discussed in
the next subsection.

We again start with the most generic solution for
attribute read access. A global procedure expects the name
of a class, the name of the attribute to be retrieved, and an
object containing the specified attribute.
value = GetAttribute(“CompositePart”,
“buildDate”, comp_part);

Since the compiler has no clue about the correctness of
the call, all checks have to be performed at run time.
Therefore, the body of the method implements the follow-
ing actions.
• Ask the dictionary if the class name exists.
• Check if the given object comp_part is an instance of

the given class.
• Ask the dictionary if the attribute name exists in the

schema and if it belongs to the identified class.
• Determine or check (if given by another parameter) the

type of the attribute and write the type information into
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the attribute container value. Alternatively, leave the
type open and delegate the determination of the type to
the application programmer.

• Determine the storage location of the attribute5. Read
and return the corresponding value.
Obviously, the above implementation is rather costly at

run time. The optimization goal of attribute read access is
to reduce overhead of the these actions or even to avoid
costs completely. JDBC reduces overhead of attribute
access through a binding mechanism at run time. The
application programmer has to explicitly bind columns to
variables in the programming language. This way, the
main costs are shifted to the call of the function that does
the binding. Thus, the performance of consecutive access
is increased. We want to do something similar, but auto-
matically at compile time and without preprocessing appli-
cation code. Therefore, a CLI compiler generates a CLI. To
enhance such an API, we have identified two main princi-
ples of optimization.

Introducing types and constants corresponding to
schema-specific and query-specific type information
reduces the scope of evaluation of methods at run time.
This type-oriented scope reduction heavily depends on the
features of the type systems of host programming lan-
guages. Especially row types and their columns are ideally
suited for the generation of the corresponding types and
constants of a host programming language. In contrast to
simple strings, generated constants firmly restrict possible
values at the type level (column names of row types, for
instance). The corresponding generated types narrow the
scope to certain row types and certain column types each
as a whole. Constraints on row types and column types as
well as accepted values at the instance level (when used as
parameter types, for example) may be encapsulated. Thus,
a generated body of a method exploiting generated types
and constants already assumes some preconditions to be
fulfilled when the evaluation of the method begins. In con-
sequence, the body of such a method is easier to code and
will perform better than generic methods.

Avoiding or improving search is based on replication.
While indices are usually used to improve the performance
of database queries, many operations of an API are naviga-
tional and, therefore, either do not use queries at all or only
use simple index lookups. Especially for fine-grained oper-
ations, it is often beneficial to improve the index lookup
itself. This is because lookups may cost more than the rest
of an operation due to the evaluation of the hash function
of the index6. Improving index lookup may be done by
replicating index data into the class of, the object of, or the
body of a given method. Instead of asking the index, the
replicated value is read. On the other hand, replicated val-

5. The current object and additional access information that the dictionary
has delivered for the checked names are used for the determination. The
attribute may, for instance, be accessible through an index into an array of
all attributes of the object or through the name of an instance variable
defined for the class.
6. Remember that CPU costs are more important for locally executable
operations than I/O costs.

ues are to be kept consistent with the index. This means
that changing a value may require an index update as well
as the update of the replicated value (double update).

These two principles may be applied at different degrees
to optimize our example of attribute read access. Skipping
the intermediate approaches that have defined methods for
class Row we now discuss only the most advanced solution
using a generated class CompositePart. In comparison
with the actions to be executed by a generic method (see
beginning of this subsection), the list of tasks to be per-
formed by the generated version looks as follows:
• There is no need to ask the dictionary if the class name

exists in the schema, because the existence has already
been checked at compile time.

• There is no need to check if the given object
comp_part is an instance of the given class, because
this instantiation check is automatically done by the run-
time system of the host programming language7.

• There is no need to ask the dictionary if the attribute
name exists in the schema and if it belongs to the identi-
fied class, because this has already been checked at com-
pile time, too.

• There is no need to determine or check the type of the
attribute, because this check, too, has already been done
at compile time. Do not write any type information any-
where, because the result type exactly matches the
attribute type.

• There is no need to determine the storage location of the
attribute, because it has already been identified at com-
pile time. Read and return the value of the attribute using
the access information generated as part of the code of
the body. Depending on the storage it may be necessary
to type-cast the value to the given return type.
Obviously, this implementation is much more efficient

than the generic version. In addition, it is type-safe. On the
other hand, the implementation overhead is higher due to
code generation. Application compilation takes longer,
especially if the generated code has to be regenerated and
compiled. Data independence is decreased, because
schema-specific or query-specific type information gets
part of the grammar of the API.

4.1.3 Interfaces and Implementations
Regarding binding of interfaces and binding of implemen-
tations two main aspects can be identified.
• Different degrees of early binding may coexist because

of method overloading (as has already been shown in the
previous subsections).

• The spectrum of gradual early bindings is orthogonally
applicable to interfaces as well as to implementations as
to be shown next. To concentrate on the major issue, we,
again, only discuss the end points of the spectrum (early
and late).
Some combinations of interfaces and implementations

seem to be better than others. But this depends on applica-

7. Of course, a fully static solution avoiding all run-time checks is even
more efficient, but it is not quite handy.
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tion needs. The most common combinations are generic
interfaces with generic implementations and early-bound
interfaces with early-bound implementations (a shown pre-
viously). But, two other possibilities exist.

A generic interface can have an early-bound implemen-
tation that exploits early-bound type information. An
example is the replacement of the generic dictionary
lookup for a name of a row type by a generated switch
statement (case statement) that embodies all possible
names of the current schema as constants.

On the other hand, an early-bound interface may have a
generic implementation ignoring the early-bound informa-
tion given by its interface. This fourth combination may
prototypically reuse an existing generic method feeding its
generic parameters.

We identify the following four rules of thumb for the
usefulness of combinations.
• Generic interfaces and implementations (combination L/

L) are beneficial w. r. t. implementation overhead, appli-
cation compilation, and data independence.

• The replacement of a generic implementation by a gen-
erated one (L/E) raises implementation overhead and
application compilation times, but improves perfor-
mance [16]. Data independence may stay at the same
level when regeneration, compilation, and code replace-
ment are automated.

• Early-bound interfaces and implementations (E/E) are
most efficient. In addition, they improve error handling.
On the other hand, implementation overhead and appli-
cation compilation times are increased, and data inde-
pendence is decreased.

• The combination of early-bound interfaces and generic
implementations (E/L) considerably simplifies the proto-
typical API design or extension. Calls to such an inter-
face are type-safe. Furthermore, an optimized
implementation may substitute generic code at any time.

We think that the combination of generic interfaces and ear-
ly-bound implementations embodies a high potential for
optimization in SQL environments. We name this combina-
tion virtual late binding, since early binding of implemen-
tations is hidden from the application programmer.

4.2 Mapping SQL Concepts

After having introduced the major principals, we proceed
with discussing the mapping of SQL concepts.

4.2.1 Generic Mapping
Of course, we cannot discuss all concepts of SQL3 here, so
we concentrate on a few that are most important following
the top-down access sequence in applications:
• handling SQL statements;
• iterating result sets;
• accessing single rows of query results;
• accessing single fields of a row.

SQL Statements. A generic class Query allows to handle
arbitrary SQL statements. An instance of Query represents
a concrete statement. The constructor of the class accepts

the statement as string. A call of the method compile()
triggers compilation of the statement by the DML compiler.
To evaluate the statement the method execute() is to be
performed. The result set is accessible when the evaluation
has finished (or earlier in case of asynchronous execution
and early delivery of partial result sets).

Iterating Result Sets. A cursor or iterator mechanism is
needed to identify a single row for subsequent access. For a
detailed discussion of different cursor concepts see [16].
We think that it is a good approach to provide exactly one
instantiated cursor as part of Query. Such a built-in cursor
is most efficient since it assumes that there are no other cur-
sors, and, therefore, does not have to care for keeping sev-
eral cursor spheres consistent. If more than one cursor is
needed or wanted, additional cursors can explicitly be in-
stantiated from a special class Cursor. These cursors
know about each other and about the existence of the built-
in cursor, and, thus, cannot invalidate states of other cur-
sors, respectively. They provide comfortable access sacri-
ficing performance.

Accessing Single Rows. Usually, cursors are positioned to
a specific row, in order to access that row. Rows are repre-
sented by instances of Row. Several methods allow for the
manipulation of single rows: toString(), set(),
copy(), delete() and so forth. Each of these methods
may be parameterized to be “shallow” or “deep”.

An explicit “fetch into host variables”, as supported by
JDBC, is not needed. The fetch is implicit and hidden, as
supported by the new SQLJ. A call to one of the methods
mentioned above automatically involves a dereferencing of
the current row. The dereferencing is used as the event to
trigger the fetch of SQL data8.

Accessing Single Fields. A row type specified in a table or
query definition consists of fields each representing a pair
of field name and data type. The generic class Row for row
types must be able to handle arbitrary query results with ar-
bitrary numbers of fields (represented by Field).

According to the SQL standard, user-defined types
implicitly define observer and mutator functions. In anal-
ogy, we define access methods to columns of row types for
the binding to the host language. In contrast to the SQL
binding mechanisms, our approach avoids the need for
explicitly binding columns to host variables by the applica-
tion programmer. A generic method getField(int) or
getField(String) of such a class allows to access all
fields by index (depending on the definition sequence) or
by name (depending on their names in the table defini-
tion9). If the table structure is defined by a UDT, then

8. In C++ the dereferencing operator “->” can be overwritten in order to
implement a smart pointer that fetches a row if it is not already cached.
Since Java does not allow to overwrite the dot-operator, this action has to
be implemented in the body of the methods mentioned above or by intro-
ducing an indirection using a descriptor (like the Java Reference Class).
9. The initialization of such names occurs at query execution time. In case
of compiled queries, the association of names and access information may
be stored in the database at compile time. In consequence, the association
is only read and does not need to be constructed at query execution time.
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getField behaves like getAttribute of the UDT
(see below) avoiding the indirection through field.

Several data types are to be distinguished: predefined
types, collection types, reference types, locator types, and
user-defined data types. User-defined types are schema
elements, that is, they are part of a DB schema.

Predefined types include numeric types, string types, the
boolean type, datetime types, and interval types. There are
always two possibilities to map these types to Java, our
representative of OOPLs. Either database types are
mapped to predefined Java types or to user-defined Java
classes. In the first case it is necessary that the predefined
types on both sides are equivalent (range of values, preci-
sion) or are at least compatible. Such a mapping is most
efficient, but usually provides poor control of value modi-
fications. The second case, mapping to classes, allows for
the encapsulation of database types. This approach is not as
efficient as the first one, but provides better control of
changes, automatic maintenance of constraints (NOT
NULL, restrictions like for date), and new operations,
which are not available on the server. In addition, polymor-
phism and subtyping can be exploited, thus, enabling the
generic Field to hold any predefined type.

Collection types are mapped to Collection. The only
currently proposed collection type is “array”. SQL arrays
are either mapped to the predefined type constructor “[]” or
to Array as subtype of Collection. The former case
is, again, faster than the latter case, but provides poor con-
trol. C++ offers the concept of templates to realize the lat-
ter case. In Java we exploit polymorphism and restrict the
element types by their common supertype Element rep-
resenting all possible element types. The Java approach
saves code in the API implementation, but is slower since
the exact type of an element has to be determined at run
time.

Reference types are mapped to Ref hiding physically
stored values (database reference, virtual memory refer-
ence). The API implementation may choose between two
interfaces implemented by the cache. The first interface
already delivers location transparency simplifying the API
code above. The second interface forces the API imple-
mentation itself to provide location transparency. This
interface is harder to use but allows for application-specific
optimization. In analogy to the location of objects, it is
possible to reach swizzling transparency. In consequence,
the API implementation can choose between existing swiz-
zling strategies or can implement an application-specific
strategy.

Locator types are used to hide transferring of very large
data values or of parts of these values10. Locators provide
location transparency of SQL data in the absence of
explicit references (see reference types above). Moreover,
locators are used to handle UDTs. This is the only SQL
way to work with user-defined types in the APIs.

10. The standard differentiates between several kinds of locators and their
features which we do not discuss here.

User-defined types are schema elements. Therefore, we
need a generic UDT to handle arbitrary UDTs. A UDT can
be distinct or structured. A distinct UDT is based on
exactly one predefined type (its base type). Distinct types
support strong typing, that is, argument and parameter
types of routines must be the same. A method
getValue() returns the value of such a field. A struc-
tured UDT defines a list of attributes and may be subject to
inheritance. To generically access those attributes, a
method getAttribute() is needed accepting at least a
description of the wanted attribute’s name (see section
4.1.1).

4.2.2 Generated Mapping
In order to introduce early binding of type information, we
have to generate classes specific to schema and query type
information.

SQL Statements. Given an SQL statement with name
“Parts”, a generated class QueryParts allows to handle
exactly this SQL statement. An instance of QueryParts
represents that statement. The constructor of the class does
not need to receive the statement as a string, because it is
known at compile time. Calling the method compile() is
optional, since the query has already been compiled. Never-
theless, it is useful to support recompilation in the case that
preconditions on which the current query execution plan is
based on have changed. To evaluate the statement the meth-
od execute() is needed. The result set is accessible when
the evaluation has finished (or earlier in case of asynchro-
nous execution and early delivery of partial result sets).

Iterating Result Sets. A cursor or iterator mechanism is
still needed to identify a single row for later access. The ini-
tially instantiated cursor as part of QueryParts knows
about the usage of the result set specified by the application
programmer. In consequence, cursor operations like “next”
are viewed as events and trigger actions, say, prefetching or
swizzling of SQL data.

Accessing Single Rows. After having positioned a cursor
to a specific row, this row can be accessed. Rows are repre-
sented by instances of class RowParts. This class encap-
sulates the row type implicitly given by the compiled query.
Query-specific methods allow for the type-safe manipula-
tion (setting, copying) of corresponding rows. The implicit
dereferencing on method invocation may be used to control
fetching of fields.

Accessing Single Fields. The generated class RowParts
for the given row type of the compiled query can only han-
dle query results with the specified number and names of
fields (class FieldX represents a field with name ‘X’; the
name scope is the package resulting by code generation for
the given query).

For each field ‘X’ a generated method getX() allows
access to the field named ‘X’. The result type of the
method maps the data type of the field.

Predefined types are not affected at all from early bind-
ing at the interface. Collection types, reference types, and
locator types are independent of the DB schema, too. User-
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defined names that could be early bound do not exist in
their context. But, we can generate specialized methods for
the data type ‘Y’ “behind” a collection type, a reference
type, or an locator type. The containing fields provide
access methods that deliver “collection of Y”, “reference to
Y”, or “locator for Y” respectively. In consequence, the
application programmer can perform save type-casting,
and coding profits from type safety.

User-defined types are schema elements and, therefore,
have names that can be bound early. In addition to the
generic UDT we generate a specialized UDT Atomic-
Part that can handle instances of AtomicPart only. For
each attribute ‘x’ of AtomicPart we generate an access
method getx(). If ‘x’ is of type ‘y’ then this method
returns a value of the type that maps ‘y’.

5 Integration of Programming Models

Different programming models exist on both sides of the
coupling of database languages to programming languages.
The following aspects have to be discussed:

Kind: SQL3 is n-set-oriented and programming languag-
es like Java, C++, and C are navigational. Adding collec-
tions and search over single collections with simple search
predicates (SSP) to programming languages, they become
1-set-oriented. Nevertheless, the programming model of
the coupling is neither purely n-set-oriented nor naviga-
tional or 1-set-oriented. Both styles are available. Most of-
ten, the result of n-set-oriented operations like SQL queries
is examined with navigational or 1-set-oriented operations.
We name this combination semi-set-oriented.

Location transparency: Knowing the location of data
supports efficient manipulation. Hiding the location of data
supports easy coding. Our solution is to provide location
transparency to the application programmer. Underneath,
optimization may orthogonally occur. Different interfaces
with and without location transparency are only internally
visible.

Flexible functionality: Different applications have differ-
ent needs. Thus, it is useful to allow for the configuration
of APIs. A browser application does not need early binding
at the interface, for instance. Therefore, it should at least be
possible to switch support for early binding of the inter-
face. The same argument holds for optimizing applications
that use late-bound interfaces. The possibility to switch be-
tween late-bound and early-bound implementations of in-
terfaces allows for the optimization of the application
without application source code changes.

Decoupled query processing: Queries may be instantly
evaluated or evaluation may be deferred. Deferred evalua-
tion demands for the decoupling of query compilation and
query execution. This decoupling may be local, inside the
same transaction, or global, perhaps spanning different
processes. The last case is important for design applica-
tions. To support this kind of decoupling we need persis-
tent queries, i. e., storing and maintaining query
information in the database. Additionally, it must be possi-

ble to find compiled queries at run time, to optionally re-
compile them, and to execute them. Besides saving the
compilation overhead at run time, the generated code for
handling such queries and their results inside an applica-
tion is checked at compile time.

Result set processing: Cursors or iterators are needed to
process result sets. As mentioned before, we distinguish
flat cursors and nested cursors which support iteration at
different levels of abstraction and navigational access at
each level (access from nested cursors to flat cursors, for
instance). It is useful to have 1-set-oriented operations with
cursors. However, the more query functionality the cursor
is equipped with, the more server code replication is re-
quired at the client.

Dictionary access: Browser applications need dictionary
access. Furthermore, in our opinion, any application may
profit from dictionary access. Since many operations of the
API use dictionary information, dictionary access is man-
datory in our architecture.

6 The Configuration Language

The CLI compiler is based on the database language and,
optionally, based on a configuration language, which de-
couples API generation from application development.
With a configuration program it is possible to introduce dif-
ferent degrees of early binding and to optimize the applica-
tion program.

To reduce the overhead of early binding especially for
fine-grained operations like attribute access, we prefer a
type-oriented instead of a value-oriented approach. In a
type-oriented approach types are configured and, thus, all
of their values or instances share the same strategy. In a
value-oriented approach, the strategy implemented for val-
ues or instances depends on their values or states respec-
tively. Value orientation demands for run-time checking
and strategy migration in case of value or state changes.

As we have learned from several projects, a configura-
tion language should only depend on DBL concepts and on
the methods provided with the API. Thus, configuration
becomes implementation independent and portable. In
addition, code generation primarily extends the bodies of
methods of the API, since these are viewed as events.

In the following, we want to introduce our configuration
language. Terminal symbols are written in capitals. We use
the following meta-symbols of an extended BNF:
# end of grammar rule
[] option
{} choice
[]+ many times, at least once
[]* many times, optional

A configuration program (cl_program) consists of con-
figuration blocks. A configuration block may be a type
control block or a query control block (type_cntrl_block or
query_cntrl_block). We concentrate on query control
blocks here.
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cl_program ::=
BEGIN [query_cntrl_block |
at_cntrl_block]+ END #

query_cntrl_block ::=
DEFINE_QUERY name AS sql_query
[BINDING binding ;]
[SWIZZLING swizzling ;]
[query_rule ;]*

END_QUERY #

If a query control block is specified, then the generic
query class is specialized. The result, the generated query
class, contains the name of the query. The AS clause con-
tains the definition of an SQL statement.

The BINDING clause determines the degree of binding
for the (nested) cursor of the query result type.
binding ::= LATE|VIRTUAL_LATE|EARLY #

LATE, the default, corresponds with a late-bound inter-
face using a late-bound implementation. Access uses a dic-
tionary mapping node names and attribute names to node
cursors and attribute offsets.

VIRTUAL_LATE means virtually late binding, that is, a
late-bound interface on top of an early-bound implementa-
tion. Access omits dictionary lookup by testing names
against constants contained in the method’s body. It is pos-
sible to switch from LATE to VIRTUAL_LATE without
changing application code.

EARLY demands for the generation of an access method
per node and attribute. Node names and attribute names are
used to define the names of these methods. The above
mentioned tests may be omitted.

Of course, more degrees than shown here can be defined
in order to fine-tune applications.

As an example for the use of API method calls as events
to trigger optimizing actions we concentrate on pointer
swizzling. First, we have to globally decide if pointer swiz-
zling is to be done and if so, which of the both extreme
strategies is to be used.
swizzling ::= NONE|LAZY|EAGER #

NONE, the default, means that no pointer swizzling
should take place for query result. Thus, chasing references
costs as much as a dictionary lookup.

LAZY means that a reference is swizzled when it is first
dereferenced. The advantage is that only those references
get swizzled that are really needed11. On the other hand,
dereferencing the same reference later has the additional
cost of asking, whether the current reference is swizzled or
not (lazy-if).

EAGER means that references are swizzled before they
are dereferenced. Most often swizzling is done when
instances are loaded and mapped into virtual memory. The
advantage is that the lazy-if is saved, because it is always
known in advance that references are swizzled. On the
other hand, usually more references are swizzled than
needed.

Obviously, there are situations where no strategy fits
best. In these situations it may be reasonable to swizzle

11. An ideal solution would swizzle only those references that are at least
used twice to amortize the swizzling overhead.

certain portions of data at certain events. In addition, per-
formance can benefit from programmer knowledge about
which references are dereferenced (more than once per-
haps) or which event (call to a method) leads to dereferenc-
ing such references. In order to support such dynamic
swizzling decisions, we propose simple event-action rules.
query_rule ::=

ON query_event DO query_action #

An event is defined to be a call to the methods of the
query class.
query_event ::= exec_event|co_event #
exec_event ::= EXECUTE|RESTORE #
co_event ::=

FIRSTCO|NEXTCO|PREVIOUSCO|
OPENNESTEDCURSOR #

By query_granule it is specified, which references
are to be swizzled.
query_action ::= qswizzle_action #
qswizzle_action ::=

SWIZZLE [query_granule] #
query_granule ::= {CURRENT|ALL} #

CURRENT means to swizzle the current object under
control, which is a result set in case of an exec_event and a
single complex object in case of an co_event. ALL can be
used to trigger swizzling of all objects at the next higher
level; in case of an co_event all complex objects in the
query result get swizzled.

We extended the grammar to capture fine-grained
objects like the nodes in a complex object and even single
attributes, though the overhead increases substantially.
Technically, the class for the complex-object cursor deliv-
ers the corresponding events, that is methods (not shown in
the grammar above). In general, optimization cannot com-
pensate the implied overhead if the targets to be optimized
are too fine-grained. But, in some cases it may nevertheless
be beneficial. For very large fields like BLOBs, for
instance, selective allocation of main memory and piece-
wise fetching can significantly increase economic memory
usage and processing speed.

7 Sample Program

To see how the discussed concepts apply to application pro-
grams we proceed with a brief example based on the query
over our sample database (see figure 3). The resulting pro-
gram compiles and executes a query and does some naviga-
tion through the query result. We use this sample scenario
to further discuss each of the three main degrees of binding:
late, early, and virtual late.

Before going into details, we want to mention that we
have chosen an example dealing with complex objects.
Currently, SQL3 gives only some basic support for com-
plex objects by means of references and collection types.
In order to, at one hand, give some idea of the potential of
our approach, and, at the other hand, motivate our opinion
that SQL3 needs better complex object support than cur-
rently offered (and that current object-relational DBMSs
need better data management support at the client side) [3,
8, 6, 20], the query in our example goes beyond the capa-
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bilities of SQL3. We assume that in the FROM clause of a
SELECT statement a complex structure can be specified
which corresponds to a graph, where the nodes represent
base tables and the vertices represent referencing columns.
Furthermore, we assume that corresponding instances
(complex objects) can be delivered by the DBMS as units
and that nested cursor structures can be generated by the
CLI compiler serving for traversing and manipulating
complex objects (as well as the contained elementary
objects, respectively). Due to space limitations, we cannot
detail this aspect and have to refer to a long version of this
paper [17].

7.1 The LATE Binding

The late-bound interfaces are always provided. Only the
corresponding class definitions must be imported.
import COAPI.*;
The Java package COAPI contains the definitions of all

interfaces and classes of the API to handle complex
objects. The most important ones are Query and Nest-
edCursor that control inter-complex-object operations
and intra-complex-object operations, respectively.

First, an instance representing the query is instantiated.
SQLQuery myQuery = new SQLQuery(“

SELECT ALL
FROM CompositePart - AtomicPart -

Connection
WHERECompositePart.type=‘type002’;”);

A call of the method compile delivers the query string
to the DML compiler of the DBMS.
myQuery.compile();

The name of the query or the name of the application is
used to decouple compilation from execution.

A call of the method execute asks the DBMS to eval-
uate the query. A corresponding transaction is opened.
myQuery.execute();

Internally, the name of the query is used to parameterize
the query execution. The result set (or only the set of repre-
sentatives depending on the configuration) is shipped to
the client and stored in an object buffer in the application’s
main memory. The result-set cursor is initially opened.

Assume, we want to position the cursor on the first ele-
ment of the result set.
myQuery.firstCO();

To step into the complex object at the current position,
we open a nested cursor and position it (at the first level) to
the first “CompositePart” node and (at the second level) to
the first corresponding “AtomicPart” node, and there set
the value of attribute “x”.
SQLNestedCursor co =

myQuery.openNestedCursor();
co.first(“CompositePart”).first(“AtomicPart”);
co.setAttribute(“AtomicPart”, “x”, someInt);
Of course, a design step will do a lot more than setting

an attribute. But this simple example suffices to illustrate
the basic principals, and we proceed to the end of the pro-
gram by performing the checkin of the internally
recorded changes.

myQuery.checkin();

Besides propagating changes, the checkin operation also
closes the transaction.

7.2 The EARLY Binding

The early-bound interfaces and implementations are only
generated on demand. Some steps have to be taken to pre-
pare their usage in an application.

First, we give a little configuration program that defines
lazy pointer swizzling (SWIZZLING LAZY) for all appli-
cations bound to the API. It defines a query named “demo”
(DEFINE_QUERY) and causes the system to bind early
(BINDING EARLY) and to generate an optimizing rule
for pointer swizzling of results of the given query (ON ...).
BEGIN

SWIZZLING LAZY;
DEFINE_QUERY demo AS

SELECT ALL
FROM CompositePart - AtomicPart -
Connection

WHERE CompositePart.type = ‘type002’;
BINDING EARLY;
ON EXECUTE DO SWIZZLE ALL;

END_QUERY;
END
This configuration program is input to the CLI compiler

which extracts the query, passes it to the DML compiler for
compilation, stores resulting meta-data, and generates
additional code for the API.

Now we come back to the application using the gener-
ated interfaces and classes. First, we have to import the
Java interfaces and classes again.
import COAPI.Generated.*;

Then we instantiate the representative of the query. The
name of the query becomes part of the interface name.
SQLQuery_demo myQuery = new SQLQuery_demo();

Compilation (if needed) and execution of the query stay the
same as in the case of late binding (see section 7.1).
myQuery.compile();

myQuery.execute();
Next, we set the result-set cursor to the first element.
myQuery.firstCO();

Stepping into the complex object looks
like the following.

SQLNestedCursor_demo co =
myQuery.openNestedCursor();

co.first_CompositePart().first_AtomicPart();
co.AtomicPart().set_x(someInt);
Obviously, all strings that have to be used with the late

binding are integrated into type names and method names
and, therefore, can be checked at compile time.

Checkin is performed in the same way as in the case of
late binding.
myQuery.checkin();

7.3 The VIRTUAL_LATE Binding

The virtual late binding is generated on demand. For that
purpose, a configuration program is needed.
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BEGIN
SWIZZLING LAZY;
DEFINE_QUERY demo AS

SELECT ALL
FROM CompositePart - AtomicPart -
Connection

WHERE CompositePart.type = ‘type002’;
BINDING VIRTUAL_LATE;
ON EXECUTE DO SWIZZLE ALL;

END_QUERY;
END
Note that the only clause that has changed w.r.t. to the

configuration program given in the previous subsection is
the BINDING clause. The application program remains
similar to the solution with the late binding. As the only
difference it does not have to contain the query definition,
because it is already part of the configuration program.

A disadvantage of this approach is that only one query is
supported. If several queries are to be supported, it is possi-
ble to extend the API by context switches using the class
loader of Java. A switch to another query implies loading
of the corresponding class that implements the stable inter-
face. Then, only the instantiation of the query representa-
tive changes. But, different queries can still be used only
sequentially. If the results of several queries are to be pro-
cessed simultaneously, the API must be able to mix query-
specific type information within a single class or to provide
specializations for each query. This, in turn, implies
changes to all statements that use the types Query and
NestedCursor, because the programmer must then use
the specializations instead of the superclasses.

8 Conclusions

We have introduced generated CLIs as a configurable spe-
cialization of classical CLIs. The central idea to become
better than classical CLIs like JDBC or language embed-
dings like SQLJ is the possibility to choose single or many
different binding times out of a spectrum of binding times
for database types and operations when mapping them to
object-oriented programming languages like Java or C++.

Early binding improves application performance and
early error handling. As an import advantage over SQLJ,
our solution enables not only schema-specific type infor-
mation but also query-specific type information to be
bound early. By optionally using code generation only for
mission-critical paths, the compilation overhead is control-
lable. An intermediate binding, the virtual late binding,
avoids a higher degree of data dependence. This binding
substantially enhances performance of generic interfaces
like JDBC or ODBC [16].

We have shown that extensions to SQL3 like support for
complex objects open a new dimension for early binding of
type information. Extending the FROM clause by directed
graphs of referencing types in the database allow for gener-
ating efficient and type-safe inter- and intra-complex-
object operations. Furthermore, we have proposed an
architecture for the implementation of generated CLIs that
is based on three main components: a cache, a generated
run-time system representing the implementation of the
operations of the interface, and a CLI compiler. The cache

provides location transparency. The run-time system repre-
sents an adaptable implementation of the interface opera-
tions. The CLI compiler parses a configuration program
that contains statements for the application-specific adap-
tation of the generated run-time system.
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